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PREFACE 

Note to the reader: 

 Chapters 2-4 of this dissertation were originally written individually for publication 

in peer reviewed scientific journals, and while much has been added to tie the chapters 

together as a single cohesive document, they were originally intended to stand-alone.  

At the time of submission, both Chapter 2 and 4 have been accepted for publication.  

Chapter 2 was originally published in Medical Physics (2015) under the title “Technical 

Note: Characterization and correction of gradient nonlinearity induced 

distortion on a 1.0 T open bore MR-SIM”.  Chapter 4 was originally published in the 

International Journal of Radiation Oncology, Biology, and Physics under the title “Image 

Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain 

Cancer”. 

 

 



www.manaraa.com

v 

TABLE OF CONTENTS 

Dedication  _________________________________________________________ ii 

Acknowledgements ____________________________________________________ iii 

Preface  _________________________________________________________ iv 

List of Tables  _________________________________________________________ ix 

List of Figures _________________________________________________________ x 

List of Abbreviations ___________________________________________________ xii 

Chapter 1 “Introduction” _________________________________________________ 1 

 Motivation for Magnetic Resonance Imaging in Radiation Treatment Planning __ 1 

 Rationale for MR-Only Simulation ____________________________________ 4 

 The Challenges of MR-SIM Only in Treatment Planning: Statement of Problem 7 

 Specific Aims ____________________________________________________ 8 

Chapter 2 “Gradient Nonlinearity Distortion of a 1T Open Bore MR-Simulator” ______ 10 

 Introduction ____________________________________________________ 10 

  Magnetic Resonance Imaging-Theory and Background _____________ 10 

  Geometric Distortion ________________________________________ 12 

 Materials and Methods ___________________________________________ 14 

  Large FOV Distortion Phantoms _______________________________ 14 

  Image Acquisition __________________________________________ 15 

  Image Analysis ____________________________________________ 17 

  Distortion Correction ________________________________________ 18 

  Temporal Stability of Distortion Corrections ______________________ 18 

 Results _______________________________________________________ 19 



www.manaraa.com

vi 

  2D Distortion Characterization at Isocenter ______________________ 19 

  2.5D Distortion Characterization at Isocenter _____________________ 22 

  3D Distortion Characterization ________________________________ 23 

 Discussion and Conclusion ________________________________________ 25 

Chapter 3 “Optimization of a Novel Large FOV Distortion Phantom for MR-only 
Treatment Planning” ___________________________________________________ 29 
 
 Introduction ____________________________________________________ 29 

 Materials and Methods ___________________________________________ 30 

  Phantom Materials _________________________________________ 30 

  Bore/Phantom Model _______________________________________ 31 

  Software Design ___________________________________________ 32 

  Software Validation _________________________________________ 33 

  Multi-magnet Characterization ________________________________ 34 

 Results _______________________________________________________ 35 

  Final Phantom Design and Construction_________________________ 35 

  Software Design ___________________________________________ 38 

  Software Validation _________________________________________ 38 

  Multi-magnet Characterization ________________________________ 41 

 Discussion and Conclusion ________________________________________ 43 

Chapter 4 “MRI and Image-Guided Radiation Therapy Using Synthetic CT in Brain 
Cancer”  ________________________________________________________ 48 
 
 Introduction ____________________________________________________ 48 

 Materials and Methods ___________________________________________ 50 

  MR-CT Compatible Head Phantom ____________________________ 50 



www.manaraa.com

vii 

  Patient Population __________________________________________ 50 

  CT Image Acquisition _______________________________________ 51 

  MRI Acquisition ____________________________________________ 51 

  Synthetic CT Generation _____________________________________ 52 

  DRR Generation and Evaluation _______________________________ 55 

  On-board Image Acquisition __________________________________ 56 

  Planar Image Registrations ___________________________________ 57 

  Volumetric (CBCT) Image Registrations _________________________ 58 

  Partial Brain Image Registrations ______________________________ 58 

 Results _______________________________________________________ 59 

  SynCT MAE ______________________________________________ 59 

  Geometric Evaluation of Phantom DRRs ________________________ 60 

  Phantom Registration Results ________________________________ 61 

  Patient Results: Planar Image Registrations ______________________ 62 

  Patient Results: Volumetric Image Registrations __________________ 64 

  Patient Results: Partial Brain Image Registrations _________________ 65 

 Discussion and Conclusion ________________________________________ 67 

Chapter 5 “Conclusions and Future Work” __________________________________ 74 

 Summary of Findings _____________________________________________ 74 

 Limitations and Future Work _______________________________________ 77 

Appendix “Distortion Model Comparison” ___________________________________ 82 

References  ________________________________________________________ 84 

Abstract  _______________________________________________________ 104 



www.manaraa.com

viii 

Autobiographical Statement ____________________________________________ 109 



www.manaraa.com

ix 

LIST OF TABLES 

Table 1: Week 1 gradient non-linearity distortion statistics for 3 cardinal planes through 
isocenter ........................................................................................................................ 20 
 
Table 2: Bore sizes, FOV, and minimum aperture widths resulting from couch position 
tabulated for fourteen MR and one MR-IGRT systems across five vendors. ................. 32 
 
Table 3: MRI acquisition parameters for each of the four MR systems tested in the multi-
magnet characterization study ...................................................................................... 34 
 
Table 4: Comparison of statistics generated for the old and new distortion methods .... 40 

Table 5: On-board Image Acquisition Parameters and Distribution of Fractions ........... 56 

Table 6: Paired t-test statistics for registration shift differences .................................... 64 

Table 7: Mean registration differences and standard deviations between synCT and CT 
reference data sets for 6 different ROIs ........................................................................ 66 

 

 



www.manaraa.com

x 

LIST OF FIGURES 

Figure 1: MR vs CT image contrast ................................................................................. 3 

Figure 2: 3D distortion phantom build............................................................................ 15 

Figure 3: Eddy current analysis ..................................................................................... 19 

Figure 4: Setup of 2D distortion phantom and corresponding distortion maps .............. 21 

Figure 5: Boxplots showing the distribution of gradient non-linearity measurements over 
82 weeks. ...................................................................................................................... 22 
 
Figure 6: Residual isocenter distortion after correction with 2.5D correction map ......... 23 

Figure 7: One component of the 3D distortion map at a plane 15cm inferior of isocenter 
before and after additional corrections .......................................................................... 23 
 
Figure 8: 3D rendering of each component of distortion measured with the 3D phantom, 
before and after correction ............................................................................................ 24 
 
Figure 9: 3D distortion measurements as a function of distance from magnet isocenter 
before and after additional corrections, and compared to the average radius of relevant 
anatomy ........................................................................................................................ 25 
 
Figure 10: Coronal pelvic MR image with and without corrections ................................ 28 

Figure 11: Image setup for material signal study and corresponding images ................ 36 

Figure 12: Phantom/Bore model for various magnet and phantom combinations ......... 37 

Figure 13: 3DSlicer distortion module graphic user interface ........................................ 38 

Phantom 14: Old vs new distortion methods plotted against radial distance ................. 39 

Figure 15: Phantom setup and images from multi-magnet characterization.................. 41 

Figure 16: Histograms representing distortion distributions for multi-magnet analysis .. 42 
 
Figure 17: Automated image processing pipeline for generating synthetic CT images of 
the brain ........................................................................................................................ 53 
 
Figure 18: MR-CT compatible head phantom with corresponding CT, SynCT, and MR 
images ........................................................................................................................... 55 
 
Figure 19: Summary of the 6 partial brain ROIs evaluated ............................................ 59 



www.manaraa.com

xi 

Figure 20: AP and lateral DRRs used for all four patients in the partial brain registration 
study .............................................................................................................................. 59 
 
Figure 21: Dose plane for slice of CT image and synthetic CT image with DVH ........... 60 
 
Figure 22: Line profile analysis of DRRs generated from both phantom CT and synCT 
images ........................................................................................................................... 61 
 
Figure 23: Mean registration translation and standard deviations in each axis from the 
reproducibility analysis .................................................................................................. 63 
 
Figure 24: Boxplots demonstrating the distribution of registration differences between 
CT and synCT ............................................................................................................... 63 
 
Figure 25: Case study comparing two patient DRRs; one with typical results for the 
population, and one yielding large registration discrepancies ....................................... 65 
 
Figure 26: Registration overlays for patient 2 and corresponding A-P and lateral CT 
DRRs and synCT DRRs ................................................................................................ 67 
 
Figure 27: Comparison of polynomial models ............................................................... 83 
 
Figure 28: Polynomial vs thin-plate spline distortion model ........................................... 83 
 

 

 

 



www.manaraa.com

xii 

LIST OF ABBREVIATIONS 

OAR ............................................................................................................ Organ at Risk 

CT-SIM ....................................................................... Computed Tomography Simulation 

CT ................................................................................................ Computed Tomography 

RTP .............................................................................. Radiotherapy Treatment Planning 

GTV ................................................................................................. Gross Tumor Volume 

PTV ............................................................................................. Planning Target Volume 

MRI ..................................................................................... Magnetic Resonance Imaging 

MR.................................................................................................... Magnetic Resonance 

EUD ............................................................................................ Equivalent Uniform Dose 

IMRT .................................................................... Intensity Modulated Radiation Therapy 

MR-SIM .......................................................................... Magnetic Resonance Simulation 

DRR .......................................................................... Digitally Reconstructed Radiograph 

SynCT .......................................................................... Synthetic Computed Tomography 

IGRT .............................................................................. Image Guided Radiation Therapy 

FOV ............................................................................................................... Field of View 

GNL ............................................................................................... Gradient Non-Linearity 

A-P ........................................................................................................ Anterior-Posterior 

GE .............................................................................................................. Gradient Echo 

S-I............................................................................................................ Superior-Inferior 

TE..................................................................................................................... Echo Time 

SVD ................................................................................... Singular Value Decomposition 

PTV ............................................................................................. Planning Target Volume 



www.manaraa.com

xiii 

L-R ................................................................................................................. Left to Right 

RT ........................................................................................................ Radiation Therapy 

TSE ......................................................................................................... Turbo Spin Echo 

UTE ................................................................................................... Ultra-fast Echo Time 

FFE .......................................................................................................... Fast Field Echo 

FLAIR ....................................................................... Fluid Attenuated Inversion Recovery 

GMM ........................................................................................... Gaussian Mixture Model 

CSF .................................................................................................... Cerebrospinal Fluid 

MAE ................................................................................................. Mean Absolute Error 

NMI .................................................................................... Normalized Mutual Information 

HU ........................................................................................................... Hounsfield Units 

TR ............................................................................................................. Recovery Time 

TI ................................................................................................................ Inversion Time 

DRR .......................................................................... Digitally Reconstructed Radiograph 

 

 

 

 

 

 

 

 



www.manaraa.com

1 

 

CHAPTER 1 “INTRODUCTION” 

Motivation for Magnetic Resonance Imaging in Radiation Treatment Planning 

 Linear accelerators have become the workhorse for delivery of radiation in a 

radiation oncology setting. Traditionally, radiation was delivered using simple geometric 

beam arrangements to ensure uniform dose coverage of the target.  This resulted in 

large amounts of radiation being delivered to the surrounding healthy tissue, or organs-

at-risk (OARs). Technological improvements, such as the development of multi-leaf 

collimators, have led to the development of techniques for delivering radiation that 

conforms closely to the tumor while sparing nearby OARs. (e.g. intensity modulated 

radiation therapy (IMRT)).  However, the delivery of conformal dose distributions is 

dependent on the ability to accurately localize the position of the target as well as OARs 

for treatment planning, which necessitates highly accurate imaging methods that can 

clearly distinguish the tumor from nearby OARs.  The gold standard for acquiring patient 

images that will be used to create a customized treatment plan for the patient is 

computed tomography simulation (CT-SIM), where a computed tomography (CT) image 

of the patient is collected prior to the treatment day with the patient immobilized and 

positioned as they will be during treatment delivery. The radiation oncologist then 

delineates the tumor volume and OARs on the CT image, which are used to generate 

an optimal dose distribution for the patient.  

 CT is the standard imaging modality used in radiotherapy treatment planning 

(RTP) due to its excellent geometric accuracy and straightforward conversion from 

image intensity values to electron density values of the object. The latter feature allows 

for the CT intensity values to be easily used for heterogeneity corrections during 
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treatment planning dose calculations.1   

However, the electron density, and therefore image intensity, of many soft 

tissues are very similar, making it challenging to distinguish between these tissues on a 

CT image. While all steps in the treatment planning and delivery process introduce 

uncertainty in patient treatment, the delineation of the gross tumor volume (GTV) on CT 

images introduces some of the greatest uncertainty in the entire RTP workflow.2-6  In 

one study involving 6 physicians contouring on CT images for 3 prostate cases, 

Cazzaniga et al. reported an inter-observer target delineation uncertainty of 36%.4  For 

RTP in the brain, Weltens et al. demonstrated large inter-observer variability in GTV 

delineation with nearly a 3-fold difference between the largest and smallest defined 

contours.5  Similarly, Valley et al. noted more than an eight-fold difference between 

smallest and largest defined planning target volumes (PTVs) in the delineation of head 

and neck carcinomas.6 

To reduce this variability and improve the ability to visualize many tumors, 

magnetic resonance imaging (MRI), with its excellent soft tissue contrast, is often used 

as an adjunct to CT for target delineation.7, 8  MRI relies on a complex set of imaging 

parameters that can drastically change the resultant image contrast.  This enables 

much more flexibility than CT in differentiating neighboring tissues to allow for accurate 

characterization of the extent of the tumor, even when surrounded by soft tissue with 

similar electron density as shown in Figure 1. When MRI is used in radiation therapy, 

MR images are typically employed to contour the target and OARs, which are then 

propagated to the CT image via image registration. The CT is then used for treatment 

planning and dose calculations.  The integration of MRI in RTP has been shown to 
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significantly reduce inter-observer and intra-observer delineation variability for many 

disease sites.9-13  In one study, the use of MR/CT resulted the reduction of the standard 

deviation of GTV delineation for nasopharynx cancer of up to 4.4mm (dependent on 

location of tumor).10 Jolicoeur et al. also showed a significant reduction in inter-observer 

variability in surgical bed delineation for breast interstitial brachytherapy when fusing 

MRI with CT.  For MRI there was no statistically significant inter-observer variability 

between delineated volumes, while the variability was highly significant when CT alone 

was used.11   

The use of MRI can also be crucial in determining the extent of the tumor during 

treatment planning. In a nasopharyngeal carcinoma image comparison study by Emami 

et al, tumor infiltration of the surrounding tissue which was missed on the CT was noted 

on many patient MR images, which resulted in a 74% increase in target volume when 

using MRI.14  While in a similar study utilizing scans from 258 patients, Chung et al 

noted over 40% of patients had infiltration that was not detected by the CT scan alone.15  

MRI has been proven to be valuable in determining boundaries between the target and 

OARs(e.g. between the prostate and the bordering bladder and rectal wall16, 17) and in 

assessment of the infiltration of the anus and/or uterus for rectal cancer.18, 19  

 

 

 

 

 

 

Figure 1: MRI (right) provides superior soft tissue contrast to CT(left), and can be useful for improved 

delineation of the target and OARs.  
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Use of MRI as an adjunct to CT for delineation has demonstrated significant 

benefits for dosimetry and overall treatment outcomes.  MRI-delineated prostate plans 

have been shown to reduce equivalent uniform dose (EUD) to the rectal wall by 3.6Gy, 

allowing for dose escalation to the PTV while maintaining the same EUD to the rectal 

wall as in CT-delineated plans.20 Similarly, an MRI-assisted dose escalation and dose 

volume adaptation study focusing on locally advanced cervical cancer described the 

potential benefits of MRI on overall treatment outcomes, where patients undergoing 

MR-assisted dose volume escalation showed up to a 20% increase in local control and 

overall survival while decreasing gastrointestinal and urinary late morbidity.21    

Rationale for MR-Only Simulation 

While MRI has demonstrated considerable benefits when used as an adjunct to 

CT for treatment planning, the co-registration process between imaging modalities can 

introduce additional systematic uncertainties.22-27  Ulin et al. conducted a multi- 

institutional study that benchmarked the accuracy of cranial MR-CT registration by 

distributing the same image set to 45 institutions and allowing each of them to register 

the images using those registration methods that were consistent with the standard 

clinical practice of each individual institution. On average, there was ~2mm of 

uncertainty introduced from the known target position (1 standard deviation).23  Similar 

studies utilizing both mutual information (MI) and landmark matching to measure the co-

registration uncertainties for prostate reported an average uncertainty of 2-3mm.24-26 

These systematic errors introduced during multiple modality image registration can be 

detrimental to the accuracy of the treatment plan by shifting high dose regions away 

from the target27, which could compromise tumor control for when using conformal 
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margins.   

MR simulation (MR-SIM) platforms have recently been developed that can 

potentially reduce some of the registration uncertainties involved in integrating MRI in 

the RTP workflow.28, 29 In order to integrate MRI into RTP, several logistical issues need 

to be addressed that necessitate some key differences between these MR-SIM 

platforms and traditional MR scanners. First, MR scanners utilize curved table tops, 

which are inappropriate for use in treatment planning simulation. Therefore, specially 

designed flat table top inserts must be installed in order to provide a surrogate for the 

treatment table.  The couch tops may take the form of couch replacements or overlays, 

but they all must be able to be indexed for repeatable set-up of patients and 

corresponding immobilization devices between the MR-SIM and the treatment room. 

Second, immobilization devices provide their own challenge in that several 

immobilization devices are incompatible with the MR system. Therefore, MR-compatible 

immobilization devices must be introduced that can be used for both simulation and 

treatment. Additionally, traditional MR bore sizes are too small to accommodate these 

immobilization devices used in radiotherapy. As a result, larger bore sizes and open 

bore geometries have been developed that can accommodate bulkier immobilization 

equipment and larger patients.  Next, while many MR systems are equipped with a 

single integrated laser, reproducible set-up requires the use of multiple external lasers 

to allow marking of the patient to indicate both translational and rotational alignment 

along and about all three axes.  To satisfy these requirements, MR-compatible external 

laser marking systems are used as a proxy for the laser systems in the treatment room. 

Finally, dedicated radiation therapy scanning protocols that meet the needs of RTP 
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have been developed.  It is also important for RTP protocols to include a high readout 

bandwidth for minimization of distortions, contiguous slices with a minimal slice 

thickness for optimal DRR image quality, and increased uniformity for accurate 

registration and segmentation.30  Furthermore, ultra-fast imaging techniques have also 

been implemented to support the minimization of patient and organ motion during 

acquisition, while alternatively, 4D-MRI and cine acquisition modes have been used to 

instead measure this motion.   

While imaging patients for RTP in the treatment position using the same 

immobilization devices is likely to improve the co-registration accuracy, this uncertainty 

could be eliminated via an MR-only treatment planning workflow.  Implementing MR-

only RTP would exploit the benefits of MRI for target and OAR delineation by avoiding 

the systematic uncertainties associated with multi-modality image registration, while 

increasing clinical efficiency and reducing imaging dose, patient time, and overall 

imaging costs.  For these reasons, many groups have shown interest in developing MR-

only RTP.21, 31-37  In a pilot study, Beavis et al. utilized a water phantom and custom 

RTP imaging sequences and demonstrated that with proper gradient selection within 

the FOV of the brain (<10cm), no distortions greater than 1mm were found, and thus no 

corrections were necessary for the MR images.38  Lee et al., tested the practicality of an 

MR-only approach for prostate cancer and found negligible differences between dose 

distributions calculated on MR-derived images vs CT. He concluded that since the 

development of newer sequences that provide higher quality images with decreased 

geometric distortion, MR-only planning for the prostate could feasibly be implemented 

within the clinical workflow.39  Similarly, Kapanen et al. performed a quantitative analysis 
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of the overall geometrical accuracy of MR-only RTP for the prostate, and proposed a set 

of procedures to support its implementation into the clinic.32  Dose calculation accuracy 

has also been investigated for lung RTP, as well as head and neck by Jonsson et al., 

with only small deviations from CT.40 

The Challenges of MR-SIM Only in Treatment Planning: Statement of Problem 

 While MR-only treatment planning has shown promise, there are still several 

well-known challenges that are currently limiting widespread clinical implementation. 

Firstly, MR images are affected by both patient-induced and system-level geometric 

distortions that can significantly degrade treatment planning accuracy.  While some of 

these distortions are smaller near magnet isocenter, distortions as high as 23mm have 

been measured.41  Accurate geometric fidelity across the entire field of view (FOV) is 

essential if MR-only RTP is to be implemented.42, 43  The total distortion is dependent on 

a variety of factors, and many studies exist that attempt to isolate and correct for each 

type of distortion.  Chang et al. conducted a study showing some distortions resulting 

from static field inhomogeneites could be corrected via a manipulation of the 

gradients.44 Some have sought to partially correct gradient non-linearity induced 

distortions via modeling of the complex fields,45 while others have utilized post-

processing corrections based on direct phantom measurements.46, 47  Some methods 

require patient specific corrections48 which can utilize phase mapping techniques to 

measure inhomogeneities induced in the B0 field.   While the techniques used for 

mitigating distortion have improved, construction of wider bore magnets and faster 

gradients have led to increased distortions due to reduced homogeneity and increased 

gradient nonlinearity.49  Much work has also been conducted to develop distortion 
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phantoms to measure and characterize distortions across large field of views (FOVs).50-

52  However, very few provide sufficiently large FOV coverage, and those that do have 

been customized to meet the geometric requirements of the specific MR system 

employed by the institution that developed the phantom.  In addition, the availability of 

comprehensive distortion analysis software is currently limited.   

MRI does not inherently provide electron density information, which is necessary 

for accurate dose calculation using tissue inhomogeneity corrections and digitally 

reconstructed radiograph (DRR) generation.  Many groups have been working toward 

generating a synthetic CT (synCT),53-59 which maps intensity values of MR images to 

estimated electron density values.  Groups such as Johansson et al. have developed 

automatic synCT generation based on advanced MR imaging sequences,56 Andreasen 

et al. demonstrated the use of a multi-patient database to assign HU values,55 and 

Sjolund et al. used registration and an atlas-based database.58 While the generation of 

synCT images can enable dose calculation on an MR-only data set,54, 60 further study  is 

needed on the implementation of synCTs as the reference datasets for linac-based 

image-guided radiation therapy (IGRT) to help determine their robustness in an MR-only 

workflow.  Thus, the overarching goal of this work is to address some of the major 

challenges that exist in implementing MR-only RTP via the following specific aims: 

Specific Aims 

1) To perform technical characterization of gradient non-linearity induced 

distortion for large FOVs, including the development and evaluation of a 

correction scheme, and the quantification of the temporal stability of these 

measurements for a clinically available MR-SIM system. 
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2) To evaluate the distortion phantom design needs of the MR-SIM community 

based on available technology and develop a modular large FOV phantom 

that can be made using easily obtainable materials and optimized for many 

MR systems. In-house distortion characterization methods from Aim 1 are 

used to develop platform independent software optimized for several MR 

systems and integrated into a widely available medical imaging application, 

3DSlicer.61 

3) To determine equivalence between synCT and CT for IGRT by benchmarking 

results in a novel MR-CT compatible brain phantom and performing an 

analysis in a cohort of brain cancer patients across multiple IGRT platforms. 

Overall, by focusing on some of the remaining unknown inaccuracies in MR-only 

RTP and laying further groundwork for integration of methods into the MR-SIM 

workflow, the completion of this work will further support the widespread clinical 

implementation of MR-only RTP.  
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CHAPTER 2 “GRADIENT NONLINEARITY DISTORTION OF A 1T OPEN BORE MR-
SIMULATOR” 

Introduction 

Magnetic Resonance Imaging-Theory and Background 

 While CT derives its signal from the electron density of the object being imaged, 

MRI relies on the net magnetization of hydrogen atoms within the object.  Normally, the 

net magnetization is zero, as magnetic field vectors for each hydrogen atom are 

randomly distributed.  However, MRI creates a net magnetization by applying a large 

external field (B0), effectively aligning the nuclear spins along the field and creating a 

two-state system: spins aligned with the B0 field (parallel), and spins aligned against the 

B0 field (anti-parallel).  The parallel spin state is a lower energy level than the anti-

parallel state, and as a result there are slightly more spins aligned with the field than 

against it, creating a net magnetization in the direction of B0 known as longitudinal 

magnetization. 

 While in the external B0 field, all spins will precess about the B0 axis at a 

resonance frequency known as the Larmor frequency, which is directly proportional to 

the magnitude of this external field as shown in equation 1.1.   

        (1.1) 

This precession would cause a component of net magnetization, known as transverse 

magnetization, which is perpendicular to the B0 axis.  However, at equilibrium the 

precessions of these spins are out of phase, resulting in a net transverse magnetization 

of zero.  If a 90 degree radiofrequency (RF) pulse is applied, these spins become 

coherent while some of them are excited from parallel to anti-parallel, temporarily 
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creating a non-zero transverse magnetization and decreasing the longitudinal 

magnetization, effectively „tipping‟ the net magnetization vector by 90 degrees.  

 Once the RF pulse is turned off, the spins immediately begin transitioning back to 

the ground state in a process called „relaxation‟.  Longitudinal, or „spin-lattice‟ relaxation, 

refers to the dissipation of energy between spins and the surrounding lattice, resulting in 

the return of some excited spins from anti-parallel back to parallel, and a gradually 

increasing longitudinal magnetization.  This relaxation is characterized by time constant 

T1, which is the time required to return to 63% (1-e-1) of the original longitudinal signal.  

Transverse or „spin-spin‟ relaxation, characterized by T2, refers to the theoretical 

gradual decay of the transverse signal as spins interact with each other and fall out of 

coherence.  However, in application, any inhomogeneities in the external field cause the 

transverse signal to decay much faster than predicted, and is therefore characterized by 

the much smaller T2*.  Using coils oriented orthogonally to the B0 axis, the signal 

resulting from this changing magnetic field can be recorded, and the three time 

constants, which are tissue dependent, together make up the basis of image contrast in 

MRI.  However, to reconstruct an image from this signal, it must also contain spatial 

information.   

The localization of MR signal relies on the successive application of magnetic 

field gradients.  For a 2D acquisition, a magnetic field gradient called the slice selection 

gradient is first applied perpendicular to the desired slice plane.  In accordance with the 

Larmor frequency equation presented above, this will cause the precessional 

frequencies in the object to vary with position.  An RF wave can then be applied with the 

same frequency as the desired slice plane, causing a shift in the magnetization and the 
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selective excitation of only atoms within this plane, such that other planes will not emit a 

signal. 

Within the excited plane, the signal can be further localized by spatially encoding 

the signal with two additional gradients.  The phase encoding gradient, in the simplest 

case, is a magnetic field gradient applied for a short time before the acquisition of each 

row of pixels.  At the time of acquisition, this results in protons which precess at the 

same frequency, but at slightly different phases of precession along the axis of the 

gradient.  Lastly, a frequency encoding gradient is applied perpendicular to the previous 

two gradients during signal acquisition, allowing for spatially varying frequency of signal 

in the final axis.  Once acquisition is complete, each voxel of the final dataset will be 

associated with a unique combination of frequency and phase, allowing for an image to 

be reconstructed by taking the inverse Fourier transform of the data. 

A 3D acquisition is accomplished similarly with both frequency and phase 

encoding, with an important difference in the slice selection process.  Rather than 

selectively exciting a single slice, the image is instead acquired with an additional phase 

encoding step in the slice selection direction.  The data is therefore acquired as a 

volume, and reconstructed with the inverse 3D Fourier transform. 

Geometric Distortion 

 The geometric fidelity of MRI relies on accurate spatial encoding of spins 

throughout the imaging region, which is done under the assumption that the B0 field is 

homogeneous and the spatial encoding gradients are linear.  While these assumptions 

are generally true within a small FOV, they tend to diverge from the real solution as you 

move farther from isocenter.28, 62, 63  If the resulting magnetic field differences are large 
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enough, errors can propagate through the spatial encoding process, and present as 

geometric distortions in the final image.  These distortions can be both system 

dependent and/or patient dependent, and where they originate helps determine the best 

approach for handling them. 

System-dependent distortions arise from inhomogeneity of the B0 field, and from 

spatial encoding gradient non-linearity (GNL).  While GNL induced distortions exist in all 

three gradient axes, typical acquisition sequences fill a single line of k-space for each 

excitation pulse, thus only encoding B0 field distortions in the frequency encoding axes.  

For a typical 2D acquisition sequence, this would result in B0 field distortions in the read 

encoding and slice selection direction.  However, as 3D acquisition sequences utilize 

further phase encoding in the slice select direction, these sequences can isolate B0 field 

distortions to only the read encode axis.50 

Patient-dependent distortion further contributes to B0 field distortion.  When a 

patient is placed in the bore, the magnetic field is perturbed by additional induced fields, 

creating further inhomogeneity.  While additional shimming can be done to correct this 

global effect, materials with different susceptibilities result in different induced fields 

while in the magnet, and these local field variations can result in non-negligible 

frequency shifts near the boundaries of objects with large susceptibility differences 

(air/tissue interfaces) in the frequency encoding direction.  Also, due to electron 

shielding, the precessional frequency of fat is shifted which can result in further 

positional inaccuracies near water/fat boundaries in an effect called chemical shift. 

The patient-dependent distortions can be minimized through thoughtful sequence 

selection (larger gradients to reduce the amount of pixel shift resulting from B0 field 



www.manaraa.com

14 

 

inhomogeneity). While some situations may necessitate the implementation of patient-

specific post-processing correction maps, patient-dependent distortions have been 

shown to depend on field strength, and can be considered clinically negligible for low 

field systems,64, 65 such as our 1.0T MR simulator.  System-dependent distortions 

can be minimized by imaging as much of the FOV near isocenter as possible. Paulson 

et al. facilitated this by physically stepping the patient through the magnet to acquire the 

total image in parts.30 GNL distortions can be further corrected using a post-processing 

technique to warp the image, or by improving the gradient field model with higher order 

spherical harmonics.  Since GNL distortion is one of the dominant sources of image 

distortion46, 49 and is independent of acquisition sequence,66 this chapter focuses on the 

technical characterization of GNL distortion for large FOVs, develops and evaluates a 

correction scheme, and then quantifies the temporal stability of the measurements for a 

clinically available MR-SIM system.  

Materials and Methods 

Large FOV Distortion Phantoms 

 For temporal GNL measurements, a 36x43x2 cm3 2D distortion phantom (Philips 

Medical Systems, Cleveland, OH) consisting of 255 capsule-shaped landmarks with 

~4mm radius and 25mm centroid-to-centroid spacing was used.  The phantom can be 

oriented in all three cardinal axes (axial, sagittal, and coronal), allowing for 2D images of 

the control point array to be acquired quickly for each image orientation (see figure 4).  

For full 3D distortion characterization, a 465x350x168 mm3 phantom with over 4600 

control points and 1.6cm centroid-to-centroid spacing was used (figure 2). 
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Image Acquisition 

 MR images were acquired with our 1.0 T MR simulator using the integrated 

quadrature coil.  Our MR simulator is an open bore design with a vertical magnetic field, 

and 45 cm anterior-posterior (A-P) clearance of the physical aperture.  To measure 

distortions resulting from GNL, the phantom was scanned with a 3D T1-weighted 

gradient echo (GE) sequence: TE/TR/flip angle of 5.54 ms/30 ms/28°, FOV 450x450x26 

mm3, bandwidth 191 Hz/pixel, acquisition voxel dimensions 1x1x2 mm3, number of 

signal averages = 1, and acquisition duration of 5.6 minutes.  This effectively isolates 

distortion resulting from susceptibility and B0 inhomogeneity to a single axis in the read 

encoding gradient direction.  So, by obtaining two scans of in each of the three phantom 

orientations (the first scan with a positive read gradient polarity 4.48 mT/m and the 

second with a negative read gradient polarity -4.48 mT/m), the polarity of B0 distortions 

will be reversed between the two scans. This allows for the reverse gradient technique 

to be utilized, which takes the average position of each control point, thereby removing 

the effects of all distortion except for that due to GNL.44, 46, 65 Our scanner is already 

equipped with vendor-supplied corrections that utilize a spherical harmonic model of the 

gradient fields to correct for GNL related distortions.  Therefore, the goal of this study 

Figure 2: (Left) Control point design, (Middle) one finished plate, and (Right) the completed 

build for the 3D distortion phantom. 
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was to acquire all images with vendor-supplied 3D corrections enabled, as is consistent 

with our clinical practice, and perform all analyses on the residual distortion. 

For the 3D phantom analysis, in order to sample the distortion over the full 

superior-inferior (S-I) scanning FOV, a batch file script was devised that communicates 

with the MR scanning software to translate the 3D phantom in the axial orientation and 

scan at three different overlapping positions to yield a total extent of 465x340x400mm3 

(>13,800 landmarks).  Two scans with reverse read gradient polarities were taken at 

each of the 3 locations within the bore so that the reverse gradient technique could be 

applied and characterize only the GNL distortion throughout the entire imaging volume.  

 As a feasibility study, the 2D phantom was also used to characterize the full 3D 

FOV using the batch script method to step the phantom throughout the bore (we will 

refer to this method as 2.5D to differentiate from the true 3D phantom).  The phantom 

was setup in the axial plane, and stepped through 15 different locations 2.5cm apart, for 

a characterized FOV of 35x40x35cm3.  To validate the accuracy of this method, the 

correction map generated from the 2.5D method was used to correct an image of the 

3D phantom, and residual distortion in this image was characterized. 

 It has been shown that eddy currents generated by rapidly pulsed gradients may 

potentially influence image distortion.50  To verify that eddy currents do not adversely 

impact our distortion characterization, the phantom was scanned as above at 4 different 

Echo Time (TE) settings (5.5, 13.8, 20.7, and 34.5 ms with TR=50.9 ms) in all three 

cardinal axes.  TEs spanned a range similar to what has been reported in the literature, 

but modified ad hoc to yield acceptable image quality and resolve scanner conflicts.  

Using 5.5ms as the baseline value, the mean shift in distortion measurements over all 
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landmarks for each phantom orientation was calculated and plotted as a function of TE 

to identify possible trends. 

Image Analysis 

 To establish the position of each phantom control point (defined as the centroid), 

an automated program was developed in-house using MATLAB® (Mathworks, Natick, 

MA).  First, images were generated by taking the maximum intensity projections through 

all 13 slices of each 2D phantom scan, which is consistent with our clinical protocol.28   

Control point detection was then conducted on each image with a combination of 

masking and thresholding, while a connectivity algorithm and some basic morphology 

techniques were employed to further separate control points from the increased noise at 

the periphery of the field.   The x and y positions (horizontal and vertical axes 

respectively) were determined by finding the centroid of each control point and were 

compared to a binary template generated from the factory schematic of the phantom.  

Similar analysis was performed for the 3D phantom for all three axes.  The total 

distortion of each control point was taken as the difference of the measured centroid 

positions from the known position in the template.  Once the distortions at each control 

point were determined, a full distortion map was interpolated by using singular value 

decomposition (SVD) to fit the data to a polynomial.    Both Hong  et al.67 and Wang et 

al.68 studied the deviation of various polynomial models (for orders 3-7 between both 

studies), and found sixth-degree polynomials had the smallest mean and maximum 

deviations from measured values.  After a similar small study of various models was 

performed(see Appendix A), the sixth-degree polynomial was chosen for the final 

model.  This polynomial can be written as shown in equation 2.2: 



www.manaraa.com

18 

 

                             (2.2) 

Where A is the matrix of coefficients defining first-degree transformation components 

such as translation, rotation, and shear, B is the matrix of second-degree coefficients, C 

defines third-degree, D defines fourth-degree, E defines fifth-degree, and F defines 

sixth-degree coefficients.  Once the coefficients are determined, full distortion maps are 

generated for the original image grid, and the maps were plotted and compared for each 

axis (week 1 shown in figure 4), and over the entire sampled FOV using the 3D 

phantom.   

Distortion Correction 

 To correct for the distortion, the derived distortion map was used as a template to 

warp the distorted images and create a corrected image.  However, since there is not 

necessarily a one-to-one correspondence between pixels in the distorted image and 

pixels in the corrected image, our algorithm utilizes a reverse warping methodology by 

stepping through each pixel of the corrected image and determining the pixel‟s intensity 

from the distorted pixels that map to it.  This ensures that no pixels in the corrected 

image are missed, and thus avoids “holes” in the corrected image.  Also, since image 

distortion may cause compression and expansion of image volumes resulting in 

intensity changes that may not be fully resolved by pixel mapping, the corrected image 

was also multiplied by a Jacobian scaling factor as determined by equation 2.1. 

 

         |

   [  ]    [  ]    [  ]   

 [  ]      [  ]    [  ]   

   [  ]      [  ]      [  ]   

| 

(2.1) 

Temporal Stability of Distortion Corrections 
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 Temporal stability of large FOV distortion corrections and recommended 

measurement frequency is not well known.  Mah et al. measured distortion at 4 

locations and showed temporal variations of less than 3 pixels over 18 months, although 

this was not characterized for large FOVs.69  To characterize the stability of GNL 

distortion measurements, weekly scans of the 2D distortion phantom in all three axes 

were acquired over the course of 18 months (23 time points) using the reverse gradient 

technique. 

Results 

2D Distortion Characterization at Isocenter 

 As demonstrated by Figure 3, eddy currents were found to be appropriately 

compensated for with image distortion varying <0.2mm (less than half the pixel width) 

over all TE settings.  Figure 4 shows the maps of residual distortion resulting from GNL 

in the three cardinal planes at magnet isocenter, and Table 1 shows the corresponding 

distortion statistics across the entire 36x43cm phantom.  While less than the 1mm pixel 

width near isocenter, these distortions become greater than 1mm as close as 9.5cm 

from isocenter in the transverse plane, 12.5cm in the sagittal plane, and 11.7cm in the 

Figure 3: Mean shift in distortion measurements over all landmarks as a function of acquisition TE for all three 

phantom orientations. 
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coronal plane.  The largest distortion magnitudes occurred near the periphery of the 

usable FOV (~4mm distortion at 20cm from isocenter), where the usable FOV is defined  

by the furthest extent at which control points can be identified.   

 

 

 

 

 

 

 

 

 

 

Plane 

Mean 

(mm) 

StDev 

(mm) 

P5 

(mm) 

P95 

(mm) 

Distortion > 1mm 

(Total % Pixels) 

Distortion > 2mm 

(Total % Pixels) 

Transverse (x) 0.07 1.10 -1.83 1.92 

35 7 

Transverse (y) 0.10 1.10 -1.5 2.15 

Sagittal (x) 0.03 0.64 -0.93 1.15 
14 3 

Sagittal (y) -0.09 0.70 -1.23 1.11 

Coronal (x) 0.40 1.16 -1.32 2.50 
40 14 

Coronal (y) 0.04 0.40 -0.52 0.77 

Table 1: Week 1 gradient nonlinearity distortion statistics for three cardinal planes through isocenter where x 

and y refer to the horizontal and vertical axes of the respective plane.  P5 and P95 describe the 5
th

 and 95
th

 

percentiles of the distortion distribution, respectively. 
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For the temporal analysis over 18 months (Figure 5), the coronal plane had the 

widest interquartile range, with 50% of the usable FOV having distortions between -0.5 

and 1.25 mm, while the sagittal plane had the smallest, with 50% of the usable field of 

view having distortion between -0.25 and 0.25 mm.  The transverse plane consistently 

has the largest distortions with maximum distortions of 4mm, and a P95 of 2mm.  

However, for any given daily distortion measurement over the 18 months, difference 

maps show 95% of voxels  varied <0.6 mm from the baseline measurement (week 1) for 

all planes.   

 

Figure 4: (Top Row) Setup of 2D distortion phantom (Middle Row) corresponding x-axis distortion 

map (mm) vs image pixel location (Bottom Row) corresponding y-axis distortion map (mm) vs image 

pixel location 

Y 

X 

       TRANSVERSE            SAGITTAL                         CORONAL 
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2.5D Distortion Characterization 

 Figure 6 shows the residual 3D distortion after corrections from the 2.5D data 

were applied.  The correction used was least affective for in the SI direction with >1mm 

distortions still present at radii larger than about 10cm from isocenter.  While for L-R and 

A-P directions, the 2.5D distortion corrections maintained less than 1mm distortion for 

most of the FOV.  However, the residual distortions in all three directions were non-

negligible near the periphery of the field. 

 

 

 

 

Figure 5: Distribution of gradient non-linearity distortion measurements over 82 weeks.  Boxplots, 

dotted line and circle indicate interquartile range, mean, and median respectively.  Whiskers indicate 

5
th

 and 95
th

 percentile, x’s mark 1
st
 and 99

th
 percentile, and dashes mark the minimum and maximum 

distortions. 
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3D Distortion Characterization 

As expected, distortion from GNL is much more pronounced in the peripheral 

voxels.  Over the entire sampled volume, 65% of all voxels had non-negligible 

distortions (>1mm), 26% of voxels distorted > 2 mm, 9% > 3mm, and 3% > 4 mm, with 

the largest distortion observed of ~7.4 mm at 23 cm radial distance from magnet 

isocenter.  Figure 7 illustrates the 3D distortion results at one particular slice of the 

phantom volume (-15cm from isocenter) before and after post-processing corrections 

were applied, while figure 8 shows a 3D rendering of the same results.  In the post-

correction dataset, nearly all measured distortions were reduced to less than 1 pixel 

width, with the exception of distant field corners up to a radial distance of 25 cm from 

magnet isocenter.  

 

 

 

 

 

Figure 6: All three components of distortion after correction with 2.5D correction map at a single 

plane near isocenter. 

Figure 7: Left-right (LR) distortion maps for the 3D phantom in the transverse plane.  (Left) 

Quantified gradient non-linearity distortion for the 3D phantom at 15 cm inferior of isocenter.  

(Right) Residual distortion after post-processing corrections were applied.   



www.manaraa.com

24 

 

 

 

 

 

 

 

 

 

Figure 9 shows the 3D stepped distortion map data plotted as a function of radial 

distance from magnet isocenter with the radii of typical anatomical structures also 

shown.63, 70-73.  Initial vendor-supplied 3D distortion corrections maintained <1mm 

distortion up to ~9.5 cm from isocenter although GNL became non-negligible as 

distance from isocenter increased.  

 

 

 

 

 

Figure 8:  (Top Row) A 3D rendering of the each component of the gradient non-linearity distortion 

for the 3D phantom. (Bottom Row) A 3D rendering of the esidual distortion after post-processing 

corrections were applied.   
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 While it has been noted in the literature 

Discussion and Conclusion 

 The eddy current analysis was in good agreement with Baldwin et al. (<0.3mm 

for a 3T cylindrical bore magnet).46  In 2000, Tanner et al. measured distortions of up to 

1.3mm with varying TE for their 1.5T cylindrical bore magnet50; however, early 

generation magnets like this one contained unshielded gradients, while modern 

hardware (shielded gradients) more readily compensates for eddy current effects.   

The planar distortion at isocenter shown in figure 4 is similar in magnitude to 

those measured without vendor corrections enables on a 3T cylindrical bore magnet by 

Baldwin et al.46  For our vertical magnet geometry, the maximum magnetic field gradient 

occurs in the right to left direction, which may contribute to the larger GNL distortion in 

this axis.  It is also important to note that our measurements were non-negligible when 

3D vendor distortion corrections were enabled, indicating that additional corrections are 

necessary for our magnet configuration. However, the temporal data suggests that for 

Figure 9: (Top Row) Distortion measurements (mm) as a function of distance from magnet isocenter (mm) for 

one scan. (Bottom Row) Residual distortion after post-processing corrections (mm) as a function of distance 

(mm).  Arrows show the average radius of relevant anatomy of interest taken from the literature.
71-73

 

                      LR                                   AP                                    SI 
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routine QA, a higher frequency of GNL measurement is not necessary and these results 

support recent recommendations of annual measurement.30 

The feasibility study using 2.5D corrections showed that while corrections for L-R 

and A-P directions were effective up to about 18cm from isocenter, the residual S-I 

distortion was not improved.  This is likely a result of less rigidity and accuracy of our 

experimental setup in the S-I direction.  However, the effectiveness of the 3D stepped 

distortion correction shown in figures 7-9 suggests that with appropriate post-processing 

corrections, GNL distortions can be reduced to negligible levels despite substantial 

initial GNL distortion for large FOVs.    Similar results were reported by Doran et al.47 

and Baldwin et al46, with a possible cause of the remaining distortion being divergence 

of the polynomial fit at the boundaries.  When plotted as a function of radial distance 

from isocenter, this data suggests that to support MR-only RTP, additional corrections 

are necessary for anatomy > 10 cm from isocenter for this magnet configuration.  

However, in another study by Wang et al., it was suggested that shorter gradient coils 

could result in significantly higher GNL distortion49, which suggests that the GNL 

distortion measured for vertical magnet designs could be significantly worse than for the 

more commonly used cylindrical bore configuration. 

 As discussed earlier, another potential solution to address GNL includes using a 

“step and shoot” technique where multiple couch longitudinal positions are used to 

segment large FOVs to facilitate imaging more of the anatomy of interest near 

isocenter30.  Our open geometry allows for lateral table translation, thus lateral lesions 

such as breast cancer or sarcomas may be positioned at isocenter to further reduce the 

impact of GNL.   
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  One limitation of this study is that it focused on GNL and did not address other 

sources of distortion such as those arising from field inhomogeneity, chemical shift, and 

magnetic susceptibility differences.  Nevertheless, using higher readout bandwidths30, 65, 

74 and thoughtful sequence selection75 have been shown to minimize these effects. A 

double echo gradient echo phase mapping method65, 76 can be used to measure and 

calculate sequence-dependent distortion maps which can then be used for corrections.  

Future work will include characterization of patient-dependent distortions for our 

magnet, including susceptibility, for relevant regions of interest.  In addition, while we 

chose to use a polynomial model in this study, there is potential for better modeling of 

the gradient fields by utilizing spherical harmonics.  This could be done by performing a 

deconvolution NMR plot of the gradients fields in isolation.  The mapping from distorted 

to undistorted space could then be done iteratively, and then resampled to a regular 

grid.  Studies have investigated the potential of this type of method, and it is possible 

that further refinement of the spherical harmonic coefficients utilized in vendor 

corrections could improve the distortion on our magnet.45  

 Another limitation of this study is the lack of validation of our Jacobian intensity 

scaling approach.  Also, given the nature of this filter, it is important to note that using 

this correction could result in image quality degradation. While no image quality analysis 

is included in this study, figure 10 has been included as a case example and shows one 

slice of both the corrected and uncorrected patient images.  It is apparent by looking at 

anatomical changes relative to the uncorrected boney contour that geometric 

differences do exist between the two images, however image quality differences are not 

immediately obvious.  Possible blurring may occur near the periphery of the patient 
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where larger corrections were necessary; however an image quality study would be 

necessary to fully characterize these differences. 

 

 

 

 

 

 

 

Inherent distortions due to GNL were non-negligible for large FOVs with 3D 

vendor corrections enabled, thus necessitating a correction scheme to support MRI only 

treatment planning for anatomies >10 cm from isocenter.  However, with post-

processing corrections, GNL was reduced to <1 mm for large FOVs.  GNL 

measurements were stable over 18 months of clinical operation, thus supporting the 

application of correction maps in MR-only RTP. Further work could be done to improve 

the initial vendor correction with higher order spherical harmonic coefficients, while 

investigation of a dynamic solution for patient-specific distortions is warranted.       

Figure 10:  (Left) Coronal pelvic image of a patient from our 1T open bore MR scanner with only vendor 

corrections applied,  (Center) with additional post processing corrections, and (Right) a subtraction 

image of the corrected and uncorrected images.  Boney contour was drawn on uncorrected image, and 

propagated to the corrected image to highlight geometric changes. 
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CHAPTER 3 “OPTIMIZATION OF A NOVEL LARGE FOV DISTORTION PHANTOM 
FOR MR-ONLY TREATMENT PLANNING” 

 
Introduction  

The system-specific distortions discussed in the previous chapter have been 

shown to increase with increased distance from isocenter, making accurate 

measurement and correction over large fields of view (FOVs) important for radiation 

treatment planning involving anatomy away from isocenter.62  Many studies have 

evaluated large FOV distortions using in-house phantom designs. Early designs include 

Tanner et al, who utilized orthogonal arrays of water-filled polymethyl methacrylate 

(PMMA) tubes to characterize a volume of 40x25x40cm3(in the left-right (L-R), anterior-

posterior (A-P), and superior-inferior (S-I) axes respectively).50 While the PMMA tubes 

have small susceptibility differences from water, they also expanded/contracted 

substantially with temperature changes, and necessitated the use of free-sliding seals at 

tube support positions.  Breeuwer et al first used a 3D array of point-like landmarks51 

while Wang et al used a 3-dimensional (3D) grid spanning a 31x31x31 cm3 volume.77 

Both of these phantoms required a fluid filling to serve as contrast from the markers.  

More recently, Huang et al devised a hybrid design comprised of regularly spaced 

spherical cavities connected by channels in a grid-like pattern.52  This design also 

utilized liquid contrast filling, but unlike the others, directed the contrast into the hollow 

landmarks themselves, creating the potential for air bubbles.  Also, while large in the 

axial plane (46.5x35cm2), they did not provide full S-I FOV characterization, spanning a 

distance of only 16.8cm in that dimension.  Walker et al developed a full FOV distortion 

phantom, utilizing an array of vitamin E capsules over a 50x51.3x37.5cm3 (L-R, S-I, AP) 

volume.  While much work exists on distortion phantom development, very few of the 
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phantoms provide sufficient large FOV coverage, and those that do have been 

customized to meet the geometry requirements for a single MR system.   While 

phantoms have been designed, the availability of comprehensive distortion analysis 

software is also currently limited.  The goal of this work was to evaluate the phantom 

design needs of the MR-SIM community based on available technology and develop a 

modular large FOV phantom that can be optimized for many MR systems and made 

using easily obtainable materials.  Lastly, in-house distortion characterization software 

was optimized for several MR platforms and integrated into a widely available medical 

imaging application platform, 3DSlicer.61 Importantly, the modular phantom design and 

availability of standardized analysis can be used to facilitate collaboration and perform 

benchmarking for multi-institutional trials of MR-only treatment planning. 

Materials and Methods 

Phantom Materials 

 The phantom design utilized in this work was adapted from a previously 

described study 78 that used a stack of low density polyurethane foam plates (6 lbs/ft3, 

2.5cm thick) with 6 mm paintball inserts (polyethylene base) as signal generating control 

points (available at: www.MCSUS.com, UPC: 844596050069). While the original 

phantom design was lightweight, the low-density foam was found to be pliable and 

easily damaged, making long-term stability of the phantom‟s geometric integrity a 

potential concern. To build a more robust phantom with a material that could withstand 

transport to multiple Radiation Oncology centers for benchmarking, twelve urethane 

foam based materials of various density and strength characteristics (4-40lbs/ft3 and 8-

72 Shore D hardness, where Shore D is a hardness scale commonly used for plastics 

http://www.mcsus.com/
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and elastomers 79) were identified.  Test slabs were custom machined by Non-Magnetic 

Specialties for each candidate material (25 ± 0.25 mm center-to-center spacing, ~6.5 

mm deep using a ~6.4 mm ball nosed endmill) and 6 mm paintballs were inserted into 

the foam.  MR and CT images were acquired to assess the paintball signal strength 

relative to each background material.  Because CT will serve as the “ground truth” 

image for distortion calculations, intensity-based automatic segmentation of the 

paintballs from the background material was an important consideration.  Final material 

selection was performed based on a balance of strength, weight, machinability, and 

cost.   

Bore/Phantom Model 

 Bore sizes and minimum aperture widths (smallest diameter of clearance within 

the bore once the couch is positioned inside) were tabulated for fourteen MR systems 

and one MR-IGRT system across five vendors (table 2).  An in-house MATLAB® 

(Mathworks, Natick, MA) script was used to generate shape models of each bore to 

simulate the position of the phantom within each configuration and assess the clearance 

of the phantom (assuming a flat table top), with the overall endpoint of determining the 

optimal phantom configuration required for each MRI bore.  Plates varied in width such 

that the widest plates were positioned near the widest portion of the bore (magnet 

isocenter) and tapered in size towards the bore periphery. A variable phantom design 

was input into the script, allowing for optimization of the plate width and total number of 

plates required for each configuration, such that there was adequate clearance while 

still characterizing the full imaging volume.  In order to simplify the model, the script 

assumes a circular cross-sectioned bore for all MR systems other than the Panorama 



www.manaraa.com

32 

 

high-field open (HFO), and a flat couch-top.  Nonetheless, it was useful for visualization 

and planning of the final phantom construction. 

MR System Vendor 

Model Bore Size 

(cm) 

Min. Aperture 

(cm) 

FOV 

(cm
3
) 

GE 

Signa (1.5T) 60 46.5 48x48x48 

Optima MR450w 
70 52 

50x50x50 

Discovery MR750w 

Philips 

Intera 60 42 53x53x53 

Panorama open 45 45x45x45 

Achieva 60 42 53x53x53 

Ingenia 70 53 55x55x50 

Siemens 

Symphony 
60 

45.2  

 

50x50x50 

 

Avanto 45.5 

Aera 
70 

 

55 

 
Skyra 

Verio 

Toshiba 
Vantage 60 48.3 50x50x50 

Titan 69 52.9 55x55x50 

ViewRay MRIdian 70 55 50x50x50 

 

Software Design 

 In-house image processing software was developed in C++ to automatically 

generate  geometric distortion maps from phantom DICOM MRI data using similar 

techniques described in detail in our previous work (section II.D)62 assuming the reverse 

gradient methodology is used. First, thresholding and masking techniques were 

employed for detection of paintball control points in both the CT and MR image.  The 

data was then filtered to remove extraneous or unusable information using a 

connectivity algorithm with basic morphology techniques, and control point positions 

Table 2: Bore sizes, FOV, and minimum aperture widths resulting from couch position tabulated for 

fourteen MR and one MR-IGRT systems across five vendors. 
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were calculated by finding the centroids of the remaining markers.  The central control 

point is then identified on both the MR and CT image, and combined with DICOM 

header information to perform a coordinate transformation of the CT control point 

positions to the MR coordinate space.  Total distortion at each control point was then 

calculated by measuring the difference between MR control point positions with those 

generated from a reference CT image.  Full distortion maps could then be generated 

across the entire FOV by interpolation using singular value decomposition to fit the data 

to a sixth-degree polynomial as previously implemented.62, 68   

 To make our work widely available to the community, we integrated our distortion 

characterization software into the 3D Slicer61 application platform.  3D Slicer is an 

extensive medical image processing toolset, widely available open-source code, and 

modular design that is designed as a plugin framework.  This then allowed for our 

distortion software to be written as a loadable C++ module that can utilize any of the 

robust C++ libraries already integrated into the 3D Slicer core.  Specifically, our module 

uses existing DICOM import plugins, as well as existing VTK80 visualization 

mechanisms, Qt81 for user-interface construction, and both ITK82 and VTK for image 

processing.  C++ also offers the advantage of faster run-times as compared to MATLAB 

and other computing software. 

Software Validation 

 To evaluate the software performance, GNL was evaluated for our 1.0T HFO 

MR-SIM and compared against our previously published results using MatLab and a 

different large FOV distortion phantom.  Distortion maps were compared directly via 

difference maps within the FOV covered by both phantoms.  Global distortion statistics 
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(including the percent of voxels distorted over 1, 2, 3, 4, and 5 mm and maximum 

distortions) were also compared between approaches, and comparisons in polynomial 

data fits were evaluated based on the mean absolute error.  Finally, distortion maps 

were plotted as a function of radial distance from isocenter to compare the overall 

distribution of new distortions maps with those that we have previously validated.  

Multi-magnet Characterization 

 CT reference images were acquired of the phantom in each configuration using a 

large-bore multislice CT scanner (BrillianceTM CT Big Bore v3.6; Philips Health Care, 

Cleveland, OH) at 120kVp, 344mAs, and voxel dimensions 1x1x2mm3. MR images 

were acquired on three MR systems, including a 1.0 T Panorama High-Field Open, 1.5 

T wide bore Ingenia, and a 3.0 T Ingenia (Philips Medical Systems, Cleveland, OH).  All 

images were acquired using integrated quadrature coils with a 3D T1-weighted GE 

sequence (see table 3 for acquisition parameters).  

 
1T 

Panorama 
1.5T Ingenia 3.0T Ingenia 

TE(ms) 5.5 4.4 2.98 

TR(ms) 30 30 31.74 

Flip Angle(°) 28 28 28 

Acquisition 
Matrix 

432/430 432/433 296/297 

Bandwidth 
(Hz/pixel) 

190 190 433 

Reconstructed 
Voxel Size 

(mm3) 
0.96x0.96x2 0.77x0.77x2 0.61x0.61x2 

Signal 
Averages 

1 1 1 

 

 

Table 3: MRI acquisition parameters for each of the three MR systems tested in the multi-

magnet characterization study. 
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Two scans were obtained for each MRI acquisition with the second acquisition 

identical except for the reversal of the read gradient polarity.  In this manner, the GNL 

induced distortion could be isolated from total distortion using the reverse gradient 

methodology,44, 46, 62, 65 and allowed for generation of patient independent distortion 

correction maps.  Standard 3D GE imaging protocols utilize phase encoding for two 

axes with only 1 frequency encoded axis, which isolates object dependent and B0 

related distortions to this axis, as they are only present in frequency encoding 

directions.  Distortions resulting from GNL are present in all directions, and are 

independent of acquisition sequence.  Also, when the polarity of the read gradient is 

reversed, the polarity of any B0 distortions will also be reversed, while GNL distortion 

remains constant, and thus, the GNL distortion can be isolated by taking the average 

distortion between the two scans.  All scans were acquired with vendor supplied 3D 

geometry corrections enabled.  MR and CT scans for 3 phantom configurations were 

then uploaded into 3DSlicer for further GNL and distortion analysis.  Also, as each MR 

system produced images of different contrast, resolution, and signal to noise, the 

parameters utilized for thresholding and object identification were changed for each 

magnet to yield optimal results. 

Results  

Final Phantom Design and Construction 

Figure 11 shows the setup and corresponding MR images for the initial signal 

test as well as CT images of the finalist materials used in the CT contrast analysis after 

machining. All urethane foam materials provided no measurable MR signal and thus 

were considered adequate for our purposes.  Materials with densities smaller than 20 
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lb/ft3 were found to be too brittle for precise machining, as the material was prone to 

crumbling.  Materials with densities larger than 40lb/ft3 were considered too heavy and 

were not included in the CT contrast analysis.  CT signal of the final foam samples, and 

thus contrast between foam and paintball, were dependent on both the manufacturer 

and density with a CT signal intensity difference from background of 636, 483, 478, 769, 

and 592 HU for materials 1-5 respectively. Thus, in order to achieve optimal contrast 

and maintain the lowest reasonably achievable weight without sacrificing machinability, 

the 20 lbs/ft3(D) material was used for phantom construction. 

 

 

 

 

 

 

 

 

 

Figure 12 depicts various modeled bore and phantom arrangements as 

simulated by MATLAB.  The top two rows show 60cm cylindrical bore configurations 

and an open bore Philips Panorama, while the bottom row illustrates widely used 70cm 

bore configurations.  The illustrated phantom design utilizes a stack of 15 plates (2.5cm 

thick), and a FOV of 55x55x37.5cm (L-R, S-I, AP), and while this design works well for 

Figure 11:  (A) Image setup for MR signal study. (B) corresponding MR image. (C) CT 

image of material finalists w/ paintballs after machining. (D) Plate from completed 

phantom. (E) MR image of completed plate 
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the 60 cm bores, it leaves a significant portion of the FOV on the 70cm bore 

uncharacterized. For this reason, we chose to build the phantom using a modular 

design with two main configurations: (1) the standard build as shown in figure 12, and 

(2) the extended build, which utilizes a stack of 20 plates and a final FOV of 

57.5x55x50cm (L-R, S-I, AP).   

 

 

 

 

 

 

 

 

 

 

 

 Additional holes were drilled and fit with fiberglass tubing inserts to allow the 

plates to be stacked, with the plates held together using 3/8 inch diameter and 16 

threads per inch fiberglass rods and hardware to secure the stack together once the 

Figure 12: (A) Siemens Symphony; (B)  Siemens Avanto; (C) General Electric Signa; 

(D) Philips Intera; (E) Philips Panorama; (F) Siemens Aera, Skyra, Verio, and 

Viewray MRIdian; (G) General Electric Optima, Discovery; (H) Toshiba Titan 
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paintballs were loaded.  One advantage of using this modular design was that each 

successive plate in the stack locks the paintballs into the plate below it. 

Software Design 

 Figure 13 shows the graphic user interface developed for the first version of the 

distortion module within 3DSlicer.  Utilizing previously implemented tools and existing 

VTK, ITK, and Qt libraries, a beta version of our distortion characterization software was 

integrated into the 3DSlicer tool set.  By using C++ as the primary language of 

implementation, the total run time was approximately 8 minutes for an Intel Core i7-

4770 CPU).   When compared to our previous MATLAB code for a similarly sized 

phantom, the overall run-time efficiency gain was ~50% (17 mins for MATLAB vs. 8 

minutes for Slicer3D).   

 

 

 

 

 

 

 

 

Software Validation 

Figure 13: 3DSlicer distortion module graphic user interface 
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 To evaluate the software performance, GNL was evaluated for our 1.0T HFO 

MR-SIM and compared against our previously published results.   The plots shown in 

figure 14 demonstrate the distortion as a function of radial distance from isocenter in all 

three axes, where the top row was generated with the MATLAB software as discussed 

in chapter 2, and the bottom row was generated using 3D Slicer and measured using 

the modular distortion phantom.  Both approaches measure similar distortion 

distributions, with the closest distortion greater than 1mm occurring at ~10cm for both 

the LR and AP axes.  The greatest variation occurred in the SI direction, where the 

closest distortion >1mm occurred at ~10cm for the approach utilizing the original 

phantom and MATLAB, but occurred closer to 5cm for the approach utilizing the 

modular phantom and Slicer. 

 

 

 

 

 

 

 

 

 

Figure 14: (Top Row) Distortion plotted as a function of radial distance from isocenter as generated 

with MATLAB software discussed in chapter 2 for the LR, AP, and SI distortion from left to right 

respectively.  (Bottom Row) Similar distortion maps as measured with the new phantom and generated 

with 3D Slicer. 

 

                 LR                                 AP                                          SI 
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 Table 4 summarizes the statistics for these distortion maps, and overall both the 

MATLAB/Phantom (methods 1) and Slicer/Modular Phantom GNL distortion 

measurements (methods 2) show similar results.  Methods 1 measure more than 1mm 

of distortion in the L-R direction for over 39% of voxels, while the methods 2 measure 

similar distortion for over 45% of voxels. Similarly for the A-P direction, methods 1 and 2 

measure more than 1mm of distortion for over 26% and 22% of voxels respectively.  

The S-I axis, on the other hand shows significantly more distortion for the methods 2, 

with roughly 45% of voxels distorted more than 1mm, while methods 1 measured about 

25%.  Finally, the polynomial fit was equivalent for both methods, with mean absolute 

errors between measured distortions and the modeled distortions being less than 

0.1mm different between methods. 

 

 

 

 

 

 

 

 

Multi-magnet Characterization 

 
Original (Methods 1) New (Methods 2) 

L-R A-P S-I L-R A-P S-I 

Max Distortion 5.5mm 4.2mm 6.1mm 8.2mm 6.5 mm 8.7mm 

Pct of voxels 
distorted >1mm 

39.3% 26.1% 25.2% 45.6% 22.8% 45.1% 

Pct of voxels 
distorted >2mm 

14.8% 3.2% 5% 20.0% 5.9% 12.8% 

Pct of voxels 
distorted >3mm 

4.4% 0.4% 1.2% 7.8% 2.2% 3.1% 

Pct of voxels 
distorted >4mm 

0.5% <0.1% 0.3% 2.7% 0.8% 1.0% 

Pct of voxels 
distorted >5mm 

<0.1% 0 <0.1% 0.7% 0.2% 0.3% 

Mean Absolute 
Error 

0.3+/- 
0.4mm 

0.2+/- 
0.2mm 

0.5+/- 
0.6mm 

0.3+/-
0.4mm 

0.3+/- 
0.3mm 

0.6+/- 
0.6mm 

Table  4: Comparison of statistics generated for the 1T Panorama using the old phantom and 

MATLAB software as described in Ch 2 for methods 1, and the modular phantom with Slicer 

software for methods 2. 
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Figure 15 shows phantom setup in 3 of the magnets utilized in this study.  The 

standard build of 15 plates (FOV of 55x55x37.5cm) was used to characterize the 1.0T 

Panorama (Figure 15 A-C), and the 1.5T Ingenia (Figure 15 D-F).  For the 3.0T Ingenia 

wide bore, on the other hand, (Figure 15 G-I) an extended build of 17 plates (FOV of 

55x55x45cm) was used. 

 

 

 

 

 

 

 

 

 

 

 Figure 16 summarizes the characterized GNL distortion distribution for the three 

MRI systems using data generated from 3DSlicer, and grouped into 3 radial distances 

from isocenter (0 to 10 cm, 10 to 20 cm, and > 20 cm).  In general, both cylindrical bore 

systems revealed less GNL distortion than the 1.0 T Panorama and, although 

Figure 15: (A) Standard phantom setup(15 plates) on the 1T Philips Panorama with 

corresponding (B) CT image and (C) MR image, as well as the (D-F) standard setup(15 plates) 

for the 1.5T Philips Ingenia, and (G-I) a large setup (17 plates)  for the 3.0T Philips Ingenia 
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distortions > 1 mm exist at FOV larger than 10-15cm.  All systems had less than 1mm of 

distortion for radii less than 100 mm from the magnet isocenter, and started to deviate 

at distances above this for both the LR and SI directions.  However, for the AP axis, 

both cylindrical bore systems nearly maintained less than 1 mm of distortion for the  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Histograms representing the distributions of distortion measurements for the left-right 

(LR), anterior-posterior (AP), and superior-inferior (SI) directions using distance to isocenter 

groupings.   Data are shown as follows:  (Top Row) 1.0 T Panorama, (Middle Row) 1.5 T Ingenia, and 

(Bottom Row) 3.0T Ingenia Wide Bore. 
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 While the 1T Panorama yielded more than 1mm of distortion in the L-R direction 

for over 45% of voxels, the 1.5T Ingenia yielded this magnitude of distortion for about 

21% of voxels, and the 3T for roughly 39% of voxels. Both cylindrical bore magnets 

perform even better in the A-P direction, with 1.4% and 12.6% of voxels respectively for 

the 1.5T and 3T, and with no voxels yielding distortions over 2mm.  The differences in 

the amount of distortion for the S-I axis are less apparent, however the maximum 

distortion for the two cylindrical bore magnets are less than half of those seen on the 

open-bore magnet. 

Discussion and Conclusion 

 This work sought to design, optimize and build a modular 3D large FOV distortion 

phantom and implement GNL distortion characterization in a widely available software 

platform.  One key difference between the phantom designed in this work and many 

others presented in the literature is the modular design which allows the flexibility to 

custom tailor the phantom shape in order to characterize many different MR and MR-

IGRT systems.  Early designs, such as the phantom used by Breeuwer et al., focused 

on small regions of interest near isocenter, and thus didn‟t characterize distortion at the 

periphery of the FOV 51.   Several other phantoms do not extend to cover the entire FOV 

needed for MR-only treatment planning, particularly for wide-bore configurations50, 63, 77.  

Huang et al. limited their phantom build in the S-I dimension to reduce the weight 52, 

although the entire FOV could be sampled by stepping the phantom through various 

couch positions within the bore as described in our previous work 62.  

 One limitation of our phantom design is the large weight.  While the phantom can 

be disassembled if desired for portability, the extended build utilizing all 20 plates 
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weighed a total of ~44 kg and required 2 staff members to assist with phantom setup.  

However, it is likely that after initial characterization, full FOV distortion measurements 

would not frequently be required as our previous work showed that the GNL distortion 

was stable over > 6 months of characterization 62 Recently, annual large FOV distortion 

measurements were recommended in the literature 30.  An alternative phantom build 

would be to use lighter density foam as done in previous iterations of this design; 

however, previous generations were also prone to damage, which can be problematic 

for maintaining the geometric integrity of the phantom.  Another option would be to build 

the phantom with a shortened S-I extent, similar to Huang et al., and to step the 

phantom to cover the entire FOV 52.  A significant challenge when building the phantom 

was the time required to precision machine the polyurethane foam to accommodate 

~7,500 paintball landmarks. Other prototypes of similar phantoms contained a more 

variable density sampling pattern that would reduce the amount of machining and 

paintballs required, with decreased landmarks near the center of the phantom where 

distortions are minimal and increased number of landmarks near the periphery where 

more fine sampling is needed 78, 83.  Our modular phantom design provides the option of 

filling only some of the control points with paintballs as needed.  Because the phantom 

required variable plate widths to accommodate the tapered design, the machining 

template required multiple modifications during the phantom generation. In addition, the 

thickness tolerance of the polyurethane foam plates was quite variable requiring 

additional machining to bring the plate thickness to the specified tolerance.  Finally, the 

paintballs rest inside the drilled holes without any affixing glue, and while they are flush 



www.manaraa.com

45 

 

with each plate surface, they often became dislodged and required reseating when 

phantom configuration changes are made. 

 The software validation shows nearly equivalent results for distortion in all axes 

between the old methods (stepped phantom with MATLAB software) and the new 

methods (large modular phantom with C++ software).  The new methods measure 

distortions of less than 1mm up to about 10cm from isocenter both the L-R and A-P 

directions, with distortion increasing non-linearly as radius increases, which are 

consistent with previous results.62  The S-I direction however, shows more distortion 

and a wider distribution for the new methods.  This could possibly be the result of 

additional uncertainties introduced by stepping the phantom in the S-I direction. While 

this methodology should be accurate within 1mm, this could account for the magnitude 

of differences measured from our data. 

 As was suggested by Wang et al, the multi-magnet distortion characterization 

demonstrated significantly worse distortions for the open-bore 1T MRI than for either 

cylindrical bore magnet.49  However, even though all images were taken with 3D 

distortion corrections turned on, all three MR systems experience distortions over 1mm 

at radii greater than 10 cm for at least 2 axes.  These measurements are consistent with 

a recent study comparing the total distortion for multiple magnets and vendors.63 Also, 

for both our study and Walker et al the remaining distortion post-correction for the 

cylindrical bore magnets increases very gradually with increasing radius, with maximum 

distortions (near 20cm from isocenter) of 2 to 3 mm.63  As all scans in our setup were 

taken with the shutter turned off, our characterized radius was larger and thus the 

overall maximum distortions were larger for our setup.  The A-P distortions, however 
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were much smaller for the cylindrical bore magnets, and, for the 1.5T Ingenia, were 

smaller than 1mm for nearly the entire FOV.  Additionally, the increased distortion in the 

through plane direction (S-I) for the cylindrical bore magnets is also reported in a recent 

study by Torfeh et al., possibly resulting from differences in gradient design for this axis. 

It is also worth noting that the data shown in figure 16 for the Panorama does not cover 

as large of a radius as the other bores.  This is due to a smaller usable FOV of this open 

bore design in the S-I direction84. 

 While the current version of the software developed for this study is limited to 

automated distortion characterization for our specific phantom design, it creates 

necessary tools for semi-automated distortion characterization on other phantoms 

utilizing point-like landmarks, allowing for potential widespread implementation into the 

community.  However, before the module is made publically available it is important to 

first implement a robust verification and validation of the code for different hardware and 

software configurations.  It is the goal of the coauthors to use an approach similar to 

that described in a previous study by Pinter et al., which developed an extensive RT 

toolkit for 3D Slicer that was made widely available to the RT community.85  Notable 

validation steps were performed including using the CTest86 test system to perform 

nightly tests using reference input data and automatically comparing these results to a 

baseline solution.  Future work will also include developing and implementing modules 

for synCT generation and patient-specific distortion into the same 3DSlicer toolkit. 

We optimized the design and implementation of a modular, extendable distortion 

phantom to support an MR-only workflow and MR-IGRT. A modular phantom design 

was deemed necessary for large FOV distortion characterization to accommodate a 
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wide range of bore sizes and configurations.  The phantom and accompanying analysis 

software will be widely available through online libraries, which will help to facilitate 

collaboration and multi-institutional trials for MR-only treatment planning. 
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CHAPTER 4 “MRI AND IMAGE GUIDED RADIATION THERAPY USING SYNTHETIC 
CT IN BRAIN CANCER” 

 
Introduction 

 RT treatment outcomes rely on the assumption that radiation is delivered to the 

planning target volume (PTV) within the expected uncertainties.  However, small 

changes in patient position, patient motion, and anatomical changes over the course of 

treatment can prevent accurate delivery of the intended dose.87  In addition, dose 

escalation has been shown to improve local control and patient quality of life88-90. 

However, the need for accurate localization of the target becomes even more critical 

when using high dose gradients, such as with IMRT, or delivering high doses per 

fraction (i.e. with stereotactic radiosurgery (SRS) or stereotactic body RT (SBRT)).91, 92  

Currently, many modern linear accelerators are equipped for image-guided radiation 

therapy (IGRT) with integrated imaging systems such as cone beam CT (CBCT) and 

orthogonal planar x-ray imaging to enable assessment of organ motion and evaluation 

of patient setup error relative to the initial reference CT-SIM image.  Typically patient 

shifts are derived by registration of landmarks or bony anatomy in the CBCT with that 

from the CT-SIM image, or by registration of orthogonal planar images with CT-SIM 

derived digitally reconstructed radiographs (DRRs).  However, these methods are 

predicated on the assumption that CT-SIM data is available to be used for reference 

data. 

For MR-only planning, it is necessary to generate a CT-like dataset from the MR 

images.  Several groups,33, 55-59 including ours,53, 54 have developed methods for 

generating synthetic CTs (i.e. synCT or pseudo CT), to support an MR-only treatment 

planning workflow. Johansson et al. developed automatic synCT generation for the 
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brain  using Gaussian mixture regression modeling with UTE imaging.56  Hsu et al also 

utilized UTE imaging along with several other MR images and classified tissues based 

on a fuzzy c-means clustering algorithm, and assigned attenuation properties with 

weights based on a probabilistic model.33   More recently, Andreasen et al. 

demonstrated a patch-based synthetic CT solution that uses a nearest-neighbor 

intensity search on a multi-patient database of MRI “patches” to assign HU values,55 

while Sjolund et al. used registration and an atlas-based database58.  The dosimetric 

differences resulting from use of synCTs were also calculated within several studies.54, 

55, 57, 60, 93, 94   Kim et al and Korhonen et al demonstrated clinically negligible dosimetric 

differences(<2% for PTV metrics) in the prostate,57, 60 and several groups have 

demonstrated similar results in the brain.54, 55, 93, 94  

While agreement with CT-SIM and dosimetric comparisons have been explored, 

it is not currently known how robust synCTs are when used as the reference datasets 

for linac-based IGRT in an MR-only workflow.  Qualitative evaluation of DRRs derived 

from MRI data has shown promise33. A patch-based “pseudo-CT” solution for pelvis in 

both volumetric and planar registrations for 15 patients was evaluated and differences 

between the pseudo-CT and CT-derived registrations were <1.2mm for volumetric and 

0.3mm for planar, omitting major outliers94. A recent IGRT evaluation of a similar 

solution in brain for only 6 patients yielded < 1mm and 1° rotation differences between 

volumetric CBCT registrations95. Recently, Yang et al. performed planar kV and oblique 

ExacTrac image registrations to UTE-based synCTs of the brain in 7 patients, but did 

not evaluate the performance of volumetric registrations.59 The work described in this 

chapter builds upon this current literature by including quantitative comparisons of 
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synCT and CT, benchmarking results in a novel MR-CT compatible brain phantom, 

including both planar and volumetric evaluations, and using multiple IGRT platforms for 

analysis in a cohort of brain cancer patients. 

Materials and Methods 

MR-CT Compatible Head Phantom 

 An MR-CT compatible 3D Anthropomorphic Skull Phantom (CIRS Inc, Norfolk) 

(Figure 18A) was first used to evaluate the overall IGRT workflow.  The phantom 

consists of skull and spine bones made out of plastic-based tissue substitutes, soft 

tissues derived from water-based polymers, and a grid inside the cranium (3D matrix of 

3mm diameter rods spaced 1.5cm apart) to serve as landmarks.  The phantom has 

simulated ear canals (3mm diameter, 17mm long) and external markers for localization.  

While the phantom cannot provide varying tissue properties like patient data, the 3D-

printed skull allowed for benchmarking of the overall IGRT accuracy and could be 

imaged across several IGRT platforms.   

Patient Population 

 Twelve patients (mean age: 60.8±13.3years) undergoing brain cancer RT, of 

which one patient underwent two treatment courses, were consented to an IRB-

approved prospective protocol for scanning with an investigational UTE/Dixon MRI 

sequence.  Within one week of CT-SIM, all patients underwent an adjunct MR-SIM.  

Patients were treated (6±9 fractions, range: 1 to 28) using the Novalis TX, TrueBeam, 

Trilogy, or Edge (Varian Medical Systems, Palo Alto, CA) according to our standard of 

care using CT-SIM for treatment planning and IGRT.  For two patients with >20 

fractions, the first 4 fractions were evaluated, as many of the patients only were treated 
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with 1 fraction, and it was important to avoid disproportionate weighting of the data.  All 

subsequent analysis was performed in an offline, retrospective manner. 

CT Image Acquisition 

 All treatment planning CT images were acquired using a Brilliance Big Bore 

scanner (Philips Health Care, Cleveland, OH) with 120kVp, 284mAs, 0.814x0.814mm2 

in-plane spatial resolution, and 1 mm slice thickness.  All patients were immobilized 

using a head frame combined with thermoplastic mask.   

MRI Acquisition 

 MR images were acquired with a 1.0T Panorama High-Field Open Magnetic 

Resonance System (Philips Medical Systems, Cleveland, OH) using an 8-channel head 

coil.  Due to the presence of the head coil, the head rest was the only immobilization 

device that was used during MR-SIM.  Ultra-short TE/Dixon (UTE/Dixon), T1-weighted 

fast field echo (T1-FFE), T2-weighted turbo spin echo (T2-TSE), and fluid attenuated 

inversion recovery (FLAIR) images were all acquired during MR-SIM for use in our 

synCT pipeline as described below.  A triple echo sequence combining UTE/Dixon 

imaging was taken with radial acquisition utilizing a triple echo sequence with either 

TE1/TE2/TE3=0.14/3.54/6.94ms or 0.14/2.44/4.74ms, time to repetition (TR)/α/density 

of angles =11.5ms/25°/75%, and field-of-view (FOV)=230-240mm in all three 

dimensions with 1.2~1.3mm isotropic voxel size. T1-FFE images were taken with a 

TR/TE/α=25ms/6.9ms/30° and voxel size=0.96/0.9602.5mm.  T2-TSE images were 

taken with TR/TE/α=3802ms/80ms/90°, voxel size=0.68/0.68/2.5mm, and FLAIR 

images were taken with TR/inversion time (TI)/TE/α=11,000ms/2800ms/140ms/90°, 

voxel size=0.9/0.9/3mm. 
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 As shown in chapter 3, it was found that the GNL distortions were <1mm within 

10 cm of isocenter62, and thus are negligible for this brain study.  Patient-induced 

distortions arising from susceptibility and chemical shift have shown a dependence on 

field strength and can be considered negligible for low field systems.64, 65  In addition, 

appropriate sequence selection (i.e. TSE sequences and high readout bandwidths30) 

minimized chemical shift and susceptibility-induced distortions (99.9% of voxels 

distorted less than 2.23ppm for brain scan96, which is equivalent to <1 pixel for our 

image parameters and field strength). 

Synthetic CT Generation 

 Twelve SynCTs were generated from MR-SIM datasets using a previously 

developed automated image processing pipeline54.  This automated pipeline consists of 

three major workflows: (1) generation of a bone-enhanced image, (2) air mask 

segmentation, and (3) final generation of synCTs(see figure 17).  Bone-enhanced 

images are generated via an optimal weighted combination of an inverted UTE 

magnitude image and water/fat maps generated from the 2-point Dixon method (which 

utilizes 2 echos, 1 with water and fat in phase and 1 with them out of phase, in order to 

determine final water/fat maps).  The first step of the automated air segmentation was to 

perform a 3D unwrapping of the phase images using Prelude97 in FSL (Analysis Group, 

FMRIB, Oxford, UK98, 99) which isolates the susceptibility-induced, chemical shift-related 

phase, and tissue conductivity-related phase zero maps via solving the set of linear 

equations common for multiple gradient echo image processing100, 101.  A 6-kernel 

Gaussian Mixture Model (GMM) classifier is then applied to the phase zero map with 

patient-specific parameters estimated using the expectation maximization algorithm102. 
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Morphological filtering and removal of cerebral spinal fluid (CSF) yielded the final air 

masks.  These are inputted into a previously established synCT workflow along with the 

bone-enhanced, FLAIR, and UTE datasets. Images are automatically segmented using 

a 5-kernel GMM.  A manual assignment process classifies each tissue type as air, 

bone, fat, brain matter, or CSF.  Then, synCTs are generated using a bulk density 

representation for air while all other tissue types are patient-specific with intensities 

obtained via a voxel-based, weighted summation method from the bone-enhanced, 

FLAIR, and UTE images53, 54.  Due to the reduced complexity of the phantom, the 

inverse UTE image and 3-kernel GMM were used for segmentation with slightly different 

material weightings.  Since there was no obvious phase difference in the head phantom, 

air segmentation was performed manually for the small air volume in the ear canal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17:  Previously developed automated image processing pipeline for generating synthetic CT 

images of the brain.
54
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 To allow for spatial comparison between CTs and synCTs, CTs were then all 

registered to the bone-enhanced image using Elastix (University Medical Center 

Utrecht, Utrecht, Netherlands) with affine methods, a multi-resolution approach(4 

resolution levels), and normalized mutual information (NMI) as the similarity metric.  All 

registrations were performed with initial registration parameter settings for number of 

histogram bins, maximum iteration number, and number of spatial samples 

of32/600/10,240 for resolution level 1, 64/300/20,480 for resolution level 2, 

64/300/40,960 for resolution level 3, and 64/300/122,880 for resolution level 4. A head 

mask was generated by thresholding the first echo of the UTE magnitude image, and 

applied to all MR-generated images.  All images were then imported into the Eclipse 

Treatment Planning System (Eclipse TPS, V11.0, Varian Medical Systems, Palo Alto, 

California) for further evaluation, and DRR generation.  SynCTs were validated by 

calculating the mean absolute error (MAE) between synCT and CT. Also, patient 

treatment plans were calculated for one patient with above average MAE and compared 

between CT and synCT. 
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DRR Generation and Evaluation 

 Once the synCTs were imported into the treatment planning system, setup 

imaging fields from the clinical treatment plans were copied to the synCTs.  For all 

patients and the skull phantom, DRRs were generated at all cardinal angles using fixed 

window settings upon export (100 to 1000 HU).  To evaluate the geometric fidelity of the 

DRRs, a semi-automatic bounding box analysis and landmark evaluation was 

conducted for the skull phantom.  For the bounding box analysis, DRRs were exported 

to MATLAB® (Mathworks, Natick, MA) via a DICOM export filter.  A manually-placed 

box, with the inferior border set to the bottom of the cranium, was used to isolate the 

skull from the immobilization devices for analysis.  Then, a k-means clustering algorithm 

with two clusters was used to segment the bone, and the resulting image was used to 

automatically calculate and compare the bounding box width and height.  Landmark 

evaluation was performed by exporting all DRRs via a DICOM filter to ImageJ (available 

Figure 18: (A) MR-CT compatible phantom on CT-SIM table; (B) Sagittal CT; (C) Sagittal 

synCT; (D) Sagittal MRI (inverted UTE); (E) Phantom in 8-channel head coil on MR-SIM table; 

(F) Axial CT (G) Axial synCT;  (H) Axial MRI (inverted UTE). 
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at http://rsb.info.nih.gov/ij) for analysis.  An ROI template was generated to plot a line 

profile through both bone and internal grid landmarks (Figure 22) at the same location 

for each DRR, and an automated peak-picking algorithm was used in MATLAB to find 

the location of local maxima of the landmarks.  The peak positions of the landmarks 

between both DRRs were compared as a surrogate for geometric equivalence. 

On-Board Image Acquisition 

 For the phantom, CBCT, KV, and MV images were acquired on 3 different linear 

accelerators (Edge, Novalis TX, TrueBeam) using clinical presets outlined in Table 3.  

For the patient study, an offline, retrospective evaluation was performed using available 

treatment positioning verification data including CBCT, kV/kV, and/or MV/kV planar 

imaging according to clinical protocol.  Table 3 summarizes acquisition parameters and 

fractions used for offline registration.  Verification images were exported from Eclipse 

TPS using an integrated DICOM filter (Image Browser, V11.0). 

 

 

Linear 

Accelerator 

Platform 

CBCT AP Planar Imaging Lateral Planar Imaging 

kVp mAs 
In-plane 

Resolution 

(mm2) 

ST 

(mm) 
Fx kVp mAs 

Resolution 

(mm2) 
Fx kVp mAs 

Resolution 

(mm2) 
Fx 

TrueBeam 100 147 0.511x0.511 1 4 85 5 0.259x0.259 7 70 5 0.259x0.259 7 

Trilogy 100 148 0.488x0.488 3 5 100 8 0.259x0.259 4 70 5 0.259x0.259 4 

Edge 100 

147 

to 

267 

0.511x0.511 
to 

0.513x0.513 

1 16 85 8 0.259x0.259 23 70 5 0.259x0.259 23 

Novalis Tx 

80 

to 

100 

738 

to 

740 

0.488x0.488 

to 

0.511x0.511 

1 

 

9 

 

6 
MV 

N/A 0.261x0.261 3 70 5 0.259x0.259 3 

Table 5: On-board image acquisition parameters and distribution of fractions treated for the four linear 

accelerator platforms. 

http://rsb.info.nih.gov/ij
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Planar Image Registrations 

 Offline, retrospective 2D-2D rigid registrations were performed for both planar 

images/synCT DRRs and planar images/CT DRRs using an in-house developed 

MATLAB program with rigid registrations performed in Elastix.  Semi-automatic rigid 

registration was performed by first interpolating planar images to the same grid as the 

DRRs and manually adjusting a region of interest to fit closely to the borders of the 

skull.  Then, the shift needed to optimize the normalized mutual information metric was 

found by calling Elastix (University Medical Center Utrecht, Utrecht, Netherlands)103 with 

a preconfigured parameter file defining the required Elastix parameters.  Both 

orthogonal image sets were registered simultaneously with a shared superior-inferior 

(S-I) axis, so as to determine the translations that would optimize both the anterior-

posterior (A-P) and lateral registrations.  Also, each image pair was initially registered 

using 5 degrees of freedom ((DOF) 2 translational and 1 rotational for each projection, 

for a total of 3 translational and 2 rotational), but all recorded angular shifts were smaller 

than the inherent experimental uncertainties and thus, only 3 translational DOF were 

recorded.  All registrations were performed using a single grid resolution, 32 histogram 

bins, and a maximum of 500 iterations. Adaptive stochastic gradient descent was 

chosen as the optimization procedure, and is recommended as a robust solution by 

Elastix developers.104  To assess registration reproducibility, 10 repeat registrations 

were performed for a subset of 8 fractions for 5 patients (80 registrations).  A new ROI 

was drawn for each registration to include this uncertainty in the reproducibility analysis.  

Registration quality was determined by visual inspection and NMI metric.  Patient shifts 

were compared for equivalence to the clinical standard (registration between planar 
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images/CT DRRs) using the paired t-test, and the resulting margins were calculated via 

the van Herk formalism105 (95% minimum dose to CTV in 90% of patients).   

Volumetric (CBCT) Image Registrations 

 3D rigid registrations were performed between daily CBCT images and synCTs 

using the Image Registration Workspace in Eclipse.  Images were manually registered 

before adjusting a cubic ROI around the patient skull and performing an automated 

registration using 3 DOF, which is consistent with our clinical protocol.  Registration 

reproducibility was evaluated via 10 repeat registrations for a subset of 5 patients.  

Registration quality was determined by visual inspection, and results were compared for 

equivalence to the CBCT/CT registration.  Margins were calculated as described for 

planar image registrations. 

Partial Brain Image Registrations 

To evaluate the performance of our synCT solution for partial brain RT, a subset 

of 4 patients was studied based on their performance in the full planar image 

registration study: a patient with the largest amount of registration uncertainty, a patient 

with the least amount of registration uncertainty, and 2 patients with registration 

uncertainty closer to the population average.  Figure 19 summarizes the 6 partial brain 

ROIs evaluated, including anterior-superior-left, anterior-superior-right, posterior-

superior-left, posterior-superior-right, posterior-inferior-left, and posterior-inferior-right.  

Each registration was repeated 5 times for all patients and ROIs, and mean shifts were 

compared for equivalence between CT and synCT.   Patient 14 demonstrates the CT 

DRRs used in the partial brain registration study for all 4 patients. 
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Results 

SynCT MAE 

 The full FOV phantom MAE was 63.8 HU (bone MAE = 159.2 HU and soft tissue 

MAE = 17.3 HU). The patient MAE was 149.2±8.7 HU (range: 138.3-166.2 HU), with 

tissue MAE of 54.70±21.93 HU and bone MAE of 427.42±38.78 HU.  Figure 21 shows 

dose planes and a dose volume histogram (DVH) for one patient case with some of the 

Figure 19: Six ROI pairs were used for the partial brain registration study, and included 

combinations of posterior-superior, posterior-inferior, anterior-superior, left, with both the left 

and right side of the skull. 

Figure 20: AP and lateral DRRs used for all four patients in the partial brain 

registration study 
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largest differences between CT and synCT, resulting in an above average MAE. For the 

synCT treatment plan, the maximum dose to the PTV was 1.6 Gy smaller than for CT, 

while the minimum dose was 0.2 Gy smaller, and the P95 was 0.7 Gy (~2%) smaller.  

The max dose to each OAR was less than 0.2 Gy different between CT and synCT, 

except for the optic chiasm, which had a maximum dose of 13.4 Gy for the CT and 11.8 

Gy for the synCT. 

 

 

 

 

 

 

 

 

 

Geometric Evaluation of Phantom DRRs 

 Figure 22 demonstrates the line profile comparison across phantom landmarks 

between the phantom CT DRRs and synCT DRRs for both right lateral and anterior 

projections. Overall, consistent geometry was observed between CT and synCT DRRs.  

The largest difference in peak-location was 1 pixel (0.98 mm) for both the A-P and the 

Figure 21: (Top Row) Dose plane for axial slice of CT image, axial slice of synCT image, sagittal slice 

of CT image, and sagittal slice of synCT image from left to right respectively. (Bottom) Comparative 

DVH between CT and synCT treatment plan for PTV and several OARs. Triangle icon corresponds to 

synCT, while square corresponds to CT. 
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R-L comparison.  Bounding box analyses were comparable between CT and synCT: 0 

and 1 mm height and width differences for A-P DRRs and 1 mm and 0 mm height and 

width difference, respectively, for R-L DRRs (rounded to nearest pixel).  Differences in 

peak intensity values were observed between CT and synCT in the phantom (33±11% 

peak difference). 

 

 

 

 

 

 

 

 

 

 

Phantom Registration Results 

 For the phantom scans, shift differences between registrations with CT-DRRs 

and registrations with synCT-DRRs using KV images from the Edge were 0.1, -0.1, and 

-0.1 mm for L-R, A-P, and S-I axes, respectively.  For Novalis TX MV and KV images, 

Figure 22: (A) Phantom lateral DRR generated from CT; (B) phantom lateral DRR generated 

from synCT; (C) image intensity profiles across the line profile for the lateral CT and synCT 

DRRs shown in (A) and (B); (D) AP-DRR generated from synCT; (E) AP-DRR generated from 

synCT; (F) image intensity profiles across line profiles shown in (D) and (E) for AP CT-DRR and 

synCT-DRR.  Profile analysis was used for landmark evaluation to assess the synCT geometric 

integrity. 
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differences were -0.4, -0.1, and -0.1mm, and for TrueBeam KV images, differences 

were -0.2, 0.1, and 0.1mm for the L-R, A-P, and S-I axes, respectively.  CBCT/CT and 

CBCT/synCT registrations were <0.4 mm different across all linear accelerators. 

Patient Results: Planar Image Registrations 

 Upon visual inspection, automatic rigid registrations did not require additional 

manual shifts.  Negligible differences in similarity metrics (NMIs) were found between 

rigid registration results:  A-P registration yielded 0.925±0.004 (range: 0.917-0.931) for 

CT-SIM and 0.926±0.005 (range:0.919-0.935) for synCT.  For lateral projections, NMIs 

were 0.917±0.009 (range:0.897-0.933) and 0.913±0.012 (range:0.885-0.927) for CT-

SIM and synCT, respectively.  Figure 23 shows the registration translations for the 

reproducibility analysis. The standard deviations (mean SD: 0.2, range of SDs: 0-0.6) 

depict the amount of registration variability for each subject.  Figure 24(left) summarizes 

the distribution of translation differences between registrations performed on patient CT 

DRRs and synCT DRRs.  The largest differences occur in the S-I axis (mean: 0.4 ± 

0.5mm, range: -0.6-1.6mm).  Differences in the left-right (L-R) axis were 0.0 ± 0.5mm 

(range: -0.9-1.2mm) and for A-P axis were 0.1 ± 0.3mm (range: -0.7-0.6mm). For the 

paired t-tests using an alpha of 0.05, table 6 shows there were no significant differences 

between CT and synCT registration for both the A-P and L-R axis with p-values of 0.58 

and 0.15 respectively.  However, the registration differences in the S-I axis were found 

to be statistically significant with a p-value of 1.21x10-4. Nonetheless, the calculated 

synCT margins were equivalent to margins derived from CT-SIM reference datasets for 

all three axes, within experimental uncertainties.   
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 Figure 25 illustrates DRRs for two different patients.  Patient 1 yielded typical 

results for the population, with ~0.1mm differences in registration for both the 2D/2D 

and CBCT registrations and with a synCT MAE of 149.5 HU.  The registrations for 

Patient 2, on the contrary, had the largest discrepancies between CT DRRs and synCT 

DRRs (~0.8mm) and synCT MAE of 140.5 HU.  

 

 

 

 

 

 

 

 

Figure 24: Distribution of registration differences obtained when synCT and CT data were used for 

reference datasets for the patient cohort.  (Left) planar image registration differences and (right) 

volumetric registration shift differences.  Boxplots, dotted line and circle indicate interquartile range, 

mean, and median respectively.  Whiskers indicate 5
th

 and 95
th

 percentile, x’s mark 1
st
 and 99

th
 

percentile, and dashes mark the minimum and maximum shift differences.  Legend:  LR = left-right, AP 

= anterior-posterior, SI = superior-inferior 

Figure 23: Planar image registration reproducibility assessment of an in-house image registration 

program for 5 different patients (8 fractions) using 10 repeated registrations. Mean and standard 

deviation of the registration translations are shown for each series. 
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Patient Results: Volumetric Image Registrations 

 The reproducibility analysis of volumetric registrations in the patient cohort 

yielded an average standard deviation of 0.3 (range=0.1-0.7).  Figure 24(right) 

summarizes the distribution of shift differences between CBCT registrations performed 

on patient images for the different reference datasets.  The largest differences occurred 

in the S-I axis (mean: 0.6 ± 0.4mm, range: -0.2-1.6mm).  In the L-R axis (mean: 0.2 ± 

0.4mm, range: -0.3-1.2mm), and in the A-P axis (mean: 0.2 +/- 0.3mm, range: -0.2-

1.2mm). For the paired t-tests using an alpha of 0.05, table 6 shows that differences 

between CT and synCT volumetric registration were statistically significant for all three 

axes, with p-values of 1.20x10-3, 0.03, and 2.66x10-7 for the L-R, A-P, and S-I axes 

respectively.  However, the calculated margin differences between synCT and CT-SIM 

reference datsets were within experimental uncertainties for all three axes.  

 

 

 

Registration Axis 
Mean 

Difference 
(mm) 

Standard 
Deviation 

Standard 
Error 

t 
Degrees 

of 
Freedom 

p-value 

Planar 

L-R 0.05 0.51 0.08 0.55 36 0.58 

A-P -0.08 0.32 0.05 -1.46 36 0.15 

S-I 0.35 0.50 0.08 4.31 36 ~0 

Volumetric 

L-R 0.26 0.42 0.07 3.55 33 ~0 

A-P 0.15 0.39 0.07 2.21 33 0.03 

S-I 0.54 0.49 0.08 6.44 33 ~0 

Table 6: Paired t-test statistics for the difference between registration shifts derived from CT and those 

derived from synCT, and the null hypothesis is that the mean difference in registration shift is equal to zero. 
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Patient Results: Partial Brain Image Registrations 

 Table 7 shows the registration translations differences between those performed 

on patient CT DRRs and synCT DRRs for each ROIs for the partial brain registration 

study.  While the largest differences occur in the S-I axis for the full brain IGRT 

evaluation, the largest differences for the partial brain analysis occurred in the L-R axis 

(mean: -0.6 ± 0.3mm, range: -2.5-1.9mm).  Differences in the A-P axis were -0.4 ± 

0.4mm (range: -0.4-1.9mm) and for S-I axis were 0.4 ± 0.3mm (range: -1.9-0.7mm).  

Among patients 2 and 3, ROIs on the right side tended to have the larger deviations 

between synCt and CT-SIM, however for patient 2 this was likely the result of the large 

Figure 25: Anterior-posterior (top row) and lateral (middle row) CT-DRRs and synCT-DRRs with 

respective intensity line profiles for patients 1 and 2.  Patient 1 represents typical results for the 

population.  Patient 2 yielded the largest discrepancies in registration (~0.8 mm) due to the impact of 

resection on DRR quality (arrows).   
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resection on the right side of the skull.  The overall population means and standard 

deviations of the differences between CT and synCT did not illuminate any particular 

ROI as worse than others, and almost all remained less than 1mm. 

 

 

 

 

 

 

 

 

ROI  
Patient 1 

Mean± StDev, 
mm 

 
Patient 2 

Mean± StDev, 
mm 

 

Patient 3 
Mean± StDev, 

mm 

Patient 4 
Mean± StDev, 

mm 

Population 
Mean± StDev, 

mm 

 
Posterior-

Superior-Left 
 

X -0.40 ± 0.99 -0.70 ± 0.37 -0.53 ± 1.34 -1.34 ± 0.40 -0.74 ± 0.42 

Y 0.58 ± 0.48 -0.06 ± 0.51 0.64 ± 1.03 -0.11 ± 0.41 0.26 ± 0.40 

Z -0.35 ± 1.01 -0.99 ± 1.33 0.43 ± 0.44 -0.58 ± 0.26 -0.37 ± 0.59 

 
Posterior-

Superior-Right 
 

X -0.41 ± 0.61 -2.47 ± 0.09 -0.58 ± 1.14 -0.30 ± 0.46 -0.94 ± 1.03 

Y 0.71 ± 0.84 0.89 ± 0.27 1.85 ± 0.66 0.67 ± 0.58 1.03 ± 0.55  

Z -0.45 ± 0.65 -0.48 ± 0.57 -0.99 ± 0.11 -0.51 ± 0.09 -0.61 ± 0.26 

 
Posterior-

Inferior-Left 
 

X -0.03 ± 0.45 -0.56 ± 0.53 -1.52 ± 0.6 0.14 ± 0.83 -0.49 ± 0.75 

Y -0.17 ± 0.52 0.17 ± 0.41 0.60 ± 0.61 0.67 ± 0.51 0.32 ± 0.39 

Z 0.45 ± 0.36 -0.03 ± 0.25 -0.11 ± 0.52 -0.69 ± 0.34 -0.09 ± 0.47 

 
Posterior-

Inferior-Right 
 

X -0.23 ± 0.55 -2.54 ± 0.05 1.91 ± 0.34 0.08 ± 0.37 -0.19 ± 1.83 

Y -0.29 ± 0.35 0.31 ± 0.38 -0.37 ± 0.77 0.80 ± 0.73 0.11 ± 0.55 

Z 0.47 ± 0.28 0.13 ± 0.15 0.71 ± 0.61 -0.30 ± 0.32 0.19 ± 0.48 

 
Anterior-

Superior-Left 
 

X -0.27 ± 0.32 0.03 ± 0.15 -1.77 ± 0.78 0.24 ± 0.17 -0.44 ± 0.91 

Y 0.22 ± 0.11 -0.05 ± 0.07 0.26 ± 0.55 0.25 ± 0.15 0.17 ± 0.14 

Z -0.87 ± 0.11 0.04 ± 0.13 -0.93 ± 1.40 -0.75 ± 1.37 -0.63 ± 0.45 

 
Anterior-

Superior-Right 
 

X -0.67 ± 0.65 -2.53 ± 0.05 0.42 ± 0.69 -0.54 ± 0.42 -0.83 ± 1.23 

Y 0.92 ± 0.59 -0.41 ± 0.06 0.27 ± 0.97 1.00 ± 0.62 0.45 ± 0.66 

Z -0.25 ± 1.19 -0.14 ± 0.07 -1.89 ± 1.29 -1.07 ± 0.68 -0.84 ± 0.81 

Table 7: Mean registration differences and standard deviations between synCT and CT reference data sets for 6 

different ROIs. X corresponds to image shifts in the L-R direction, Y the S-I direction, and Z the A-P direction. 
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Discussion and Conclusion 

 The accuracy and reliability of conducting IGRT with synCT data have been 

compared to the use of CT-SIM.  In the phantom, geometric DRR evaluation yielded 

comparable results between CT and synCT based on landmark analysis.  However, 

slight differences in peak intensity values were observed in the phantom, whereas these 

were not as apparent in patient DRRs (Fig 5).  This is likely due to the synCT algorithm 

being optimized for variable tissue contrasts present in patients as compared to the 

phantom.  Intensity discrepancies were observed for Patient 2 near the region of the 

resection cavity due to misclassification.  Nonetheless, the registration uncertainty for 

this case was <1mm between synCT and CT references.   Our results are consistent 

with a recent comparison between 10 paired points between MR/CT DRRs, yielding a 

Figure 26: (Top) Registration overlays for patient 2, and corresponding 

(middle) A-P and lateral CT DRRs and (bottom) synCT DRRs 
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mean difference of -0.05±0.85mm (maximum of ~2mm)106.  Our bounding box analysis 

for the phantom also demonstrated differences between the overall skull geometries 

within this range.  A limitation of using the head phantom for synCT validation is that 

some components (i.e. air-filled ear canals and nearby material) did not yield detectable 

MR signal (Fig 16H).  This resulted in an inaccurate segmentation of the air cavity with 

some material misclassified as bone.  Nevertheless, the landmarks were sufficient for 

analyzing the geometric integrity of synCT DRRs. 

 The largest patient MAE deviations were observed near the segmented bone and 

air regions, where the impact of misregistration and segmentation errors will contribute 

to higher MAEs. This also explains why the MAE for bone is much higher than for soft 

tissue (427 HU vs 55 HU).  Also, as noted for patient 2, the intensity discrepancies 

present near the resection resulted in this patient having above average MAEs, while 

another patient (see figure 20) had increased MAE resulting from a segmentation error 

at the posterior portion of the skull where an anomaly occurs, resulting in the confluence 

of four different sinuses (as noted in Zheng et al.54) The overall MAE is consistent with 

the range reported in our previous feasibility study developing the synCT pipeline using 

fewer patients (147.5±8.3 HU)54, as well as in the literature56, 58.  However, as shown in 

figure 21, these MAEs have may have a small impact on the overall treatment plan 

dosimetry.  The patient shown in this figure (patient 7) is shown to have an above 

average difference in MAE, and presents with a 5% dose difference between the point 

of dose max for CT and synCT.  Although other studies show less minimal impact of 

intensity differences: Zheng et al demonstrated similar MAEs near air bone interfaces, 

and there were negligible changes in target coverage, even for the patient case with the 
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worst MAE (<0.5% difference for both D95 and maximum dose).54  Also Jonsson et al. 

demonstrated maximum point dose differences of up to 1% when using bulk density 

overrides for synCT generation107.  The registration reproducibility analysis showed that 

the magnitude of variability was patient-dependent.  Two patients with the highest 

standard deviations in the S-I direction were found to have a partially distorted cerebrum 

after resection (Patients 2 and 5, Figure 25).   However, the largest standard deviations 

were 0.6mm for 2D/2D and 0.7mm for volumetric registrations. These values are within 

the expected variability for automated planar 108 and volumetric CBCT registrations 109 

for IGRT systems110. 

 On average, patient registration differences were largest in the S-I axes (0.2mm 

larger on average).  Similarly, the p-values calculated from the paired t-test of the 2D/2D 

registrations showed statistically significant differences between CT and synCT in only 

the S-I direction. A possible explanation for the reduced performance in this axis could 

be related to the slightly larger CT slice thickness (~1 mm) as compared to the in-plane 

resolution (0.8 mm).  This could also be the result of slight errors in the positioning of 

the kV imaging equipment. While the simultaneous registration of both orthogonal 

image sets with a shared S-I axis allowed for a single optimized simulated patient shift, 

it has to the potential to also exacerbate any systematic differences that exist between 

the A-P and L-R images. These differences could potentially reduce the quality of 

synCT registrations in the S-I direction thus resulting in larger differences between Ct 

and synCT in this axis.    However, the p-values from the paired t-test of the volumetric 

registration analysis showed statistically significant differences in all three axes, and 

thus under the current assumptions can reject the null hypothesis that these 
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registrations are statistically equivalent.  One potential source of error in this study is the 

initial registration between CT and the bone-enhanced image.  Any errors in this initial 

registration would propagate throughout the study, and could contribute to this result.  

However, the mean difference between CT and synCT was calculated to be 0.3mm, 

which is less than the experimental uncertainties involved in this study.  Also, some of 

the difference between CT and synCT for the patient registrations are likely the result of 

anatomical differences which are not corrected by rigid registration and therefore do not 

entirely result from differences in synCT quality.  Additionally, for both 2D/2D and 

volumetric registration, margins calculated for synCT were equivalent to CT for all axes. 

So while some of the differences measured in this study were statistically significant, 

they pose little potential for clinical significance for the majority of patients in this study. 

Patient 2 had a large piece of the skull surgically removed (Fig 5) and thus, intensity 

differences resulted between the CT and synCT generated DRRs in the resected area 

and adversely affected the synCT DRR quality.  Even though these evaluations 

included residual uncertainty of the registrations, in this worst case scenario, the overall 

registration differences between CT and synCT were still within the reported registration 

error for IGRT systems (0.4-1.1mm)108-110.   Additionally, the population mean difference 

between partial brain registrations for CT and synCT were less than 1mm different for 

nearly all 6 ROIs, with the largest being 1mm. Figure 26 shows the CT DRRs and 

synCT DRRs with an overlay of the final DRR registrations for the patient 2 and the 

posterior-superior-right ROI, which exhibited the largest differences between CT and 

synCT overall.  Registrations for this patient were over 2.5mm different between CT and 

synCT for all 3 ROIs involving the right side of the skull near the resection cavity.  
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However, while this patient also had some of the largest differences in the whole-brain 

IGRT evaluation, it maintained less than 1mm difference between CT and synCT.  This 

suggests that when using synCT for IGRT in areas of large resection cavities, it would 

be advantageous to consider whole-brain localization as opposed to localized 

registration near the resection cavity.  Improvements of the synCT algorithm are needed 

in areas of large resection, where the cavity is sometimes characterized as bone 

instead of soft tissue or edema.54  Also, as mentioned above this study is limited in that 

the comparison of these registration shifts rely on accurate initial registration of the CT 

images into the MR coordinate system.  Any errors introduced in this preprocessing 

step would be systematic, and propagate into the 2D/2D and volumetric registration 

studies, potentially impacting results.  However, this step is necessary to conduct a 

simulated patient setup comparison between both modalities, and was used by other 

similar studies in the literature.59, 95 

 Yin et al. showed that MR-DRRs and CT-DRRs were within 2.5mm in a phantom 

and patient case using Chamfer matching111 although the MRI acquisition was not 

optimized for MR-simulation (i.e. 5mm slice thickness, 2.5mm slice spacing).  Using 

thinner slice thicknesses is a key component to generating accurate DRRs.  During our 

initial synCT brain algorithm development, we highlighted 2 out of 10 cases that 

required modified air masks in the frontal sinus region via an additional post-processing 

step using the UTE magnitude image and morphological erosion62.  This modification 

increased the true positive rate (TPR) agreement with CT-SIM air segmentation by 2 

and 5% for the 2 patients.  However, applying this technique for the rest of the cohort 

did not change their TPR results (<0.1% different).  In the whole-brain IGRT evaluation, 
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rigid registrations were performed using the entire cranium whereas in partial brain RT, 

local registrations could be performed in regions with higher uncertainty that may 

influence registration performance.  For example, if a localized portion near the frontal 

sinus were used where uncertainty may be greater, caution would need to be exercised 

to ensure accurate synCT geometry.  Recently, oblique ExacTrac brain images were 

registered to UTE-based synCTs in 7 patients and registrations were <1mm/1 

different.59  Our typical patient results were consistent with this work as well as another 

by Edmund et al95, with 17 out of 18 of our population mean registration differences 

being less than 1mm.   Our study additionally presented a worst case scenario in an 

attempt to characterize the upper limit of registration performance in this setting, and it 

was shown that this patient exhibited up to 2.5mm of registration difference between CT 

and synCT.   However, this study only involved 4 patients and may not represent 

accurate population statistics, and a larger study is warranted. 

 To translate to other field strengths, UTE-Dixon acquisition parameters would 

need to be optimized and post-processing corrections for bias field and patient-specific 

distortions would be required.  Putting our findings into clinical context, the 

recommended CTV to PTV margins for IMRT range from 3-5mm for glioblastomas112, 

and thus, our registration errors using synCTs as the reference dataset were within a 

clinically acceptable range (i.e. <0.3mm difference in margin calculation).  Previously, 

we found that synCT plan quality met all clinical criteria with no systematic differences 

when used as the primary treatment planning dataset60.    These data, when taken in 

concert with the IGRT study, suggest that MR-only treatment planning is feasible for 

select partial brain RT patients.  One recent study suggests that the level of MR-only 
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accuracy in the brain is sufficient for stereotactic applications.59  Several groups have 

conducted end-to-end testing of an MR-only workflow113, 114 and clinical studies are 

currently underway. 

 Using a previously developed synCT methodology, we have quantified the 

accuracy of using synCT in an IGRT pipeline relative to CT, which is currently the 

clinical standard for brain.  For typical cases, the characterized differences between the 

use of synCT and CT were within the expected errors associated with image 

registration.  A prospective clinical trial is warranted to determine potential gains of MR-

only treatment planning. 
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CHAPTER 5 “CONCLUSIONS AND FUTURE WORK” 

Summary of Findings 

This body of work sought to address some of the major challenges that exist in 

implementing MR-only RTP.  Specifically, we focused on characterizing some of the 

remaining unknown inaccuracies, while also laying the groundwork for further 

integration of methods into the MR-SIM workflow.   

The first aim of this study focused on the technical characterization of gradient 

non-linearity induced distortion for large FOVs in a clinically available MR-SIM system.  

Using in-house developed software, this study first characterized the distortion at all 

three major planes through isocenter.  We demonstrated that eddy currents were 

appropriately compensated for, and resulted in negligible variation in distortion 

measurements.  It was also shown that this system experiences non-negligible 

distortions, even after applying vendor-supplied distortion corrections.  However, the 2D 

phantom was used weekly over the course of 18 months, and the GNL distortions were 

shown to be consistent to baseline measurements over this entire period.  This supports 

the implementation of annual GNL distortion measurements for routine quality 

assurance.  This study also investigated the potential of using the 2D phantom to 

characterize the entire 3D field of view by stepping the phantom through the bore while 

scanning at various positions.  It was shown that while this methodology was effective 

for in-plane distortion for the majority of the FOV, the distortion in the S-I direction was 

not improved.  Finally, we used a novel, large 3D distortion phantom to characterize the 

distortion across the entire FOV, and demonstrated  post processing correction scheme.  

Overall, through the characterization and correction of GNL, distortions were reduced to 
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<1mm across the entire FOV.   This work is significant in that the community is currently 

lacking guidelines on MR-SIM QA and the frequency of which to measure MRI 

parameters.  A Task Group has been recently formed to address this and generate 

consensus statements on QA approaches and suggested tolerances.   

The second aim covered in Chapter 2 focused on the design and construction of 

a large FOV modular distortion phantom that has been optimized to accommodate the 

clinically available MR systems.  In addition, we developed open-source distortion 

correction software for quantifying the total and GNL distortions.  In this study, we first 

tested a set of urethane foam based materials with a wide range of densities for 

machinability as well as CT and MR signal relative to signal generating paintballs used 

as landmarks.  Several of the low density materials were found to be too brittle for high 

precision machining purposes, and ultimately, a material with 20 lbs/ft3 density was 

chosen as a compromise between contrast, strength, and overall weight.  An in-house 

MATLAB script was also used to generate models of various MR bore and phantom 

designs in order optimize the size of the phantom for many different MR systems.  The 

final phantom was designed with two main configurations: a standard build (of 

55x55x37.5cm) to accommodate 60 cm bores, and an extended build for large bore 

systems (57.5x55x50cm).  The modular phantom design and use of a CT reference as 

the baseline enables other phantom configurations when necessary.  Using distortion 

characterization methods from aim 1, we developed platform-independent software 

integrated into a widely available medical imaging application, 3DSlicer.  Preliminary 

results were presented, and phantom scans were acquired on 5 different MR systems 

for further software optimization and distortion characterization.   This work is important 
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in that it provides the community with a system independent phantom and tool-set for 

characterization of geometric distortion, making implementation of these practices more 

accessible. 

Lastly, aim 3 investigated the equivalence between synCT and CT in an IGRT 

setting by benchmarking results with a novel MR-CT compatible brain phantom and 

performing an analysis in a cohort of brain cancer patients across multiple IGRT 

platforms.  In this chapter, we first demonstrated the intensity equivalence of our synCT 

solution with an overall MAE of 63.8 HU.  DRRs generated from both CT and synCT of 

the head phantom were found to be geometrically equivalent with less than 1mm 

difference between the two for both a line profile and bounding box analysis with 

comparable registration results (<0.4 mm difference).  SynCTs were also investigated 

for a cohort of brain cancer patients using both planar and volumetric registrations, and 

both were found to be within 1mm of CT registrations for the majority of patients.  

However, certain circumstances such as a patient with a large resection cavity, resulted 

in some cases with larger than average differences between CT and synCT.  A partial 

brain RT sub-study was also conducted for a small cohort of patients, and the synCT 

was once again shown to be equivalent to CT-SIM for the average patients.  However, 

caution must be exercised when the partial brain information is derived from areas 

where synCT performance is less accurate and intensity discrepancies occur, such as 

near large resection cavities.   This work is significant as the accuracy of synCT in an 

IGRT pipeline not well studied, but is imperative for robust implementation of MR-SIM 

only.  
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Overall, we have characterized several inaccuracies within MR-only RTP while 

improving the accessibility of these methods so that they may be integrated into the 

MR-SIM workflow. 

Limitations and Future Work 

 While much work has been done to characterize MRI in a radiation therapy 

setting, widespread implementation of MR-SIM is still limited by several additional 

challenges that were beyond the scope of this work.  Further work could be done to 

improve the initial GNL vendor distortion correction with higher order spherical harmonic 

coefficients.  This could allow the spatial integrity of MR images to be maintained 

without the need for additional post-processing corrections.  Furthermore, this study 

was limited in that it focused solely on distortion resulting from GNL, and did not 

address other sources of distortion such as those arising from B0-field inhomogeneity, 

chemical shift, and magnetic susceptibility differences.  However, scanning with higher 

readout bandwidths30, 65, 74 when possible has been shown to minimize these effects. It 

is also important to note that these effect are dependent on field strength, and thus  

additional corrections may be necessary for higher field strength magnets.  To do this, a 

dual echo gradient echo pulse sequence can be used for phase mapping65, 76 to 

measure an calculate these sequence-dependent distortion maps which can then be 

used for correction similarly to our application of GNL correction maps.  Future work 

could include the characterization of patient-dependent distortions for our magnet, 

including susceptibility, for relevant regions of interest, which is an active area of 

research for our group and others.64, 75, 96, 101 Specifically, due to the timeframe for MR 

imaging being ~30 minutes or more, there is need for a dynamic solution to patient 
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specific distortions that accounts for changing physiology during the scan (bladder/rectal 

filling, respiration states, etc).   

 Also, our study on the accuracy and reliability of conducting IGRT with synCT 

data is limited in that it focuses on only one of many synCT solutions, and further work 

is necessary to fully describe the potential of other synCT solutions in this setting.  The 

results regarding additional uncertainty for our patient with a surgical resection also 

necessitates additional work to improve our synCT solution in the brain, while 

translation of this solution to other field strengths requires additional optimization of 

UTE-Dixon acquisition parameters and post-processing for bias field inhomogeneities.  

This work is also limited to the brain and male pelvis, but there are other areas of 

interest for MR treatment planning, including the abdomen and female pelvis.115, 116 

Also, while outside the scope of this work, there is potential for incorporation of 

functional information into MR treatment planning.117  Thorough end-to-end testing is 

also an important piece of establishing MR-SIM.  Sun et al. designed and implemented 

and anthropomorphic male pelvic phantom than can be utilized for end to end testing of 

prostate radiation therapy.114  This pelvic phantom contains simulated OARs, and was 

scanned on an MR simulator with radiotherapy dedicated couch-top and laser 

positioning system.  The phantom was planned with a seven-field IMRT treatment, and 

dose calculated using bulk electron densities.  Another phantom with identical external 

structure, but with an internal geometric grid was used to measure geometric distortion.  

This study found a difference of less than 0.01% in dose to the prostate between MRI 

and CT based plans.  Another statistical study by Korsholm et al. found that mean dose 

differences were slightly larger when comparing organs at risk (up to 4.2%).113  They 
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also found that these overall results can be improved by accounting for air and bone in 

the synthetic CT.  Considering that the expected uncertainty due to simulation is ~1mm, 

the setup uncertainty is 1-3mm, and output of the linear accelerator can be ~2%, these 

results are well within a reasonably expected range.118, 119  Lastly, as MR-SIM achieves 

more widespread integration into the clinic, further prospective clinical trials are 

warranted to fully determine the benefits of MR-only treatment planning, and the 

potential gains yet to be achieved. 

 Altogether, MR-SIM has the potential to significantly reduce the soft tissue 

delineation variability for many disease sites, 9-13
 while also avoiding the systematic 

uncertainties associated with multi-modality image registration and increasing the 

clinical efficiency.21, 31-37  Yet some challenges still exist.  While the measurement and 

correction of distortion has been explored at length, these corrections are still not readily 

available in the clinical setting.  Also, air/bone segmentation still poses some difficulty.  

Methods such as those utilized in this work exist for automatic separation of  bone and 

air in the skull54, although for pelvic synthetic CT generation, some methods still require 

manual contouring53 or other patient specific manual modification.57  Overall, before the 

full scale of this potential can be realized it is necessary to establish confidence that 

MR-only simulation can be performed accurately.  

 Once these challenges have been adequately addressed, the future involvement 

of MR in RT could be extensive.  For example, research is already being done to 

incorporate functional imaging into treatment planning.  Dynamic contrast enhance MR 

imaging is being used to identify intra-prostatic lesions for dose escalation120, and 

FLAIR imaging is being used to characterize functional lung so as to prioritize this tissue 
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for avoidance.121  Also, several groups are currently working toward the application of 

MRI for in-room MR guided radiation therapy.  One approach to this problem involves 

the use of a split 0.35T MR scanner with three Cobalt-60 heads.  This allows for in room 

MR guidance, without interference of the MR system, and the low field would result in 

clinically negligible susceptibility artifacts.  However, this system provides a limited dose 

rate, and images with low signal to noise ratio.122  Another approach under development 

involves a 1.5T MR scanner combined with a linear accelerator; which, in a proof of 

concept study showed that with appropriate design, both the MR scanner and linear 

accelerator may be operated simultaneously without degradation in performance.123    

This design and several others under development124, 125 would also allow for in room 

MR guidance with improved signal to noise ratio over the low-field design, although at 

1.5T patient specific distortions may be more of a problem, making distortion 

mitigation/correction all the more important.75   

 To move toward this overall goal, this work has characterized the inaccuracies 

related to GNL distortion for a previously uncharacterized MR-SIM system at large 

FOVs, which is necessary for RTP applications of MRI.  This work also established that 

while distortions are still non-negligible after current vendor corrections are applied, 

simple post-processing methods can be used to further reduce these distortions to less 

than 1mm for the entire field of view.  Additionally, it was important to not only establish 

effective corrections, but to establish the previously uncharacterized temporal stability of 

these corrections.  This work also developed methods to improve the accessibility of 

these distortion characterizations and corrections.  We first tested the application of a 

more readily available 2D phantom as a surrogate for 3D distortion characterization by 
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stepping the table with an integrated batch script file.  Later we developed and 

constructed a large modular distortion phantom using easily obtainable materials, and 

showed and constructed a large modular distortion phantom using easily obtainable 

materials, and used it to characterize the distortion on several widely available MR 

systems.  To accompany this phantom, open source software was also developed for 

easy characterization of system-dependent distortions. Finally, while the dosimetric 

equivalence of synCT with CT has been well established, it was necessary to 

characterize any differences that may exist between synCT and CT in an IGRT setting.  

This work has helped to establish the geometric equivalence of these two modalities, 

with some caveats that have been discussed at length. 
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APPENDIX “DISTORTION MODEL COMPARISON” 

 While the use of a sixth-degree polynomial for distortion modeling has been 

validated in the literature,67, 68 a similar, though smaller, experiment to the Hong et al. 

and Wang et al. was performed to characterize the errors of various models for our 

magnet. Two dimensional distortions present in our 1T open bore magnet were 

measured using the 2D distortion phantom as defined in Chapter 2 of this dissertation, 

and full distortion maps were generated for various polynomial models of order 3-9, as 

well as for a thin plate spline model.  The closeness of fit was then evaluated by taking 

the difference between actual measured distortion at each control point and the 

distortion at the same location in the interpolated map, and both the maximum and 

mean absolute differences were plotted for each polynomial model (see figure 27).  

These plots show a similar trend for the polynomial models as demonstrated in the cited 

literature, with the smallest reported maximum and mean differences between the 

model and measured values occurring for polynomial orders 4-6, and the smallest 

magnitude value occurring for orders 5 and 6.  Also, while the maximum differences 

occur at the periphery, the radius of maximum difference is similar for all orders of 

polynomial while the magnitude of the absolute maximum difference increases for the 

higher orders tested, suggesting that the tested higher order polynomials do not 

increase the quality of fit at the periphery.  The thin plane spline model was not used, as 

this methodology resulted in overfitting and unreasonable distortion gradients (see 

figure 28).  These results, in conjunction with the results reported in Hong et al. and 

Wang et al. support the use of a sixth-degree polynomial model for our purposes. 
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Figure 28: (Left) x-axis distortion map (mm) vs image pixel location using a sixth-degree polynomial 

and (Right) a thin plate spline model.  The thin plate spline was found to over-fit to the data, resulting 

in unreasonable distortion gradients and peaks. 

Figure 27: (Left) Maximum absolute difference and (Right) mean absolute difference 

between modeled distortion and measured distortion for 7 different polynomial orders. 
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 While MR-only treatment planning has shown promise, there are still several 

well-known challenges that are currently limiting widespread clinical implementation. 

Firstly, MR images are affected by both patient-induced and system-level geometric 

distortions that can significantly degrade treatment planning accuracy.  .  In addition, the 

availability of comprehensive distortion analysis software is currently limited.  Also while 

many groups have been working toward a synthetic CT solution, further study is needed 

on the implementation of synCTs as the reference datasets for linac-based image-

guided radiation therapy (IGRT) to help determine their robustness in an MR-only 

workflow. 

 A 36×43×2 cm3 phantom with 255 known landmarks (~1 mm3) was scanned 

using 1.0T high-field open MR-SIM at isocenter in the transverse, sagittal, and coronal 

axes, and a 465x350x168mm 3D phantom was scanned by stepping in the superior-

inferior direction in 3 overlapping positions to achieve a total 465x350x400mm sampled 

FOV yielding >13,800 landmarks(3D Gradient-Echo, TE/TR/α = 5.54 ms/30 ms/28°, 

voxel size =1×1×2mm3). A binary template (reference) was generated from a phantom 
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schematic. An automated program converted MR images to binary via masking, 

thresholding, and testing for connectivity to identify landmarks. Distortion maps were 

generated by centroid mapping. Images were corrected via warping with inverse 

distortion maps, and temporal stability was assessed. 

 To determine candidate materials for phantom and software development, 1.0 T 

MR and CT images were acquired of twelve urethane foam samples of various densities 

and strengths.  Samples were precision machined to accommodate 6 mm diameter 

paintballs used as landmarks.  Final material candidates were selected by balancing 

strength, machinability, weight, and cost.  Bore sizes and minimum aperture width 

resulting from couch position were tabulated from the literature (14 systems, 5 vendors).  

Bore geometry and couch position were simulated using MATLAB to generate machine-

specific models to optimize the phantom build.  Previously developed software for 

distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 

T), compared against previously published 1.0 T results, and integrated into the 

3DSlicer application platform. 

 To evaluate the performance of synthetic CTs in an image guided workflow, 

magnetic resonance simulation  and  CT simulation images were acquired of an 

anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were 

generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon 

data sets through a voxel-based weighted summation of 5 tissue classifications. The 

DRRs were generated from the phantom synCT, and geometric fidelity was assessed 

relative to CT-generated DRRs through bounding box and landmark analysis. An offline 

retrospective analysis was conducted to register cone beam CTs to synCTs and CTs 
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using automated rigid registration in the treatment planning system. Planar MV and KV 

images were rigidly registered to synCT and CT DRRs using an in-house script. Planar 

and volumetric registration reproducibility was assessed and margin differences were 

characterized by the van Herk formalism. 

 Over the sampled FOV, non-negligible residual gradient distortions existed as 

close as 9.5 cm from isocenter, with a maximum distortion of 7.4mm as close as 23 cm 

from isocenter.  Over 6 months, average gradient distortions were -0.07±1.10 mm and 

0.10±1.10 mm in the x and y-directions for the transverse plane, 0.03±0.64 and -

0.09±0.70 mm in the sagittal plane, and 0.4±1.16 and 0.04±0.40 mm in the coronal 

plane. After implementing 3D correction maps, distortions were reduced to < 1 pixel 

width (1mm) for all voxels up to 25 cm from magnet isocenter. 

 All foam samples provided sufficient MR image contrast with paintball landmarks.  

Urethane foam (compressive strength ∼1000psi, density ~20lb/ft3) was selected for its 

accurate machinability and weight characteristics. For smaller bores, a phantom version 

with the following parameters was used: 15 foam plates, 55×55×37.5 cm3 (L×W×H), 

5,082 landmarks, and weight ~30 kg. To accommodate >70 cm wide bores, an 

extended build used 20 plates spanning 55×55×50 cm3 with 7,497 landmarks and 

weight ~44 kg.  Distortion characterization software was implemented as an external 

module into 3DSlicer‟s plugin framework and results agreed with the literature. 

 Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm 

of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for 

phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric 

registrations. For patient planar registrations, the mean shift differences were 0.4±0.5 
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mm (range, 0.6 to 1.6 mm), 0.0±0.5 mm (range, 0.9 to 1.2 mm), and 0.1±0.3 mm 

(range, 0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-

posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations 

were 0.6±0.4 mm (range, 0.2 to 1.6 mm), 0.2±0.4 mm (range, 0.3 to 1.2 mm), and 

0.2±0.3 mm (range, 0.2 to 1.2 mm) for the S-I, L-R, and A-P axes, respectively. The CT-

SIM and synCT derived margins were <0.3mm different. 

 This work has characterized the inaccuracies related to GNL distortion for a 

previously uncharacterized MR-SIM system at large FOVs, and established that while 

distortions are still non-negligible after current vendor corrections are applied, simple 

post-processing methods can be used to further reduce these distortions to less than 

1mm for the entire field of view.  Additionally, it was important to not only establish 

effective corrections, but to establish the previously uncharacterized temporal stability of 

these corrections.  This work also developed methods to improve the accessibility of 

these distortion characterizations and corrections.  We first tested the application of a 

more readily available 2D phantom as a surrogate for 3D distortion characterization by 

stepping the table with an integrated batch script file.  Later we developed and 

constructed a large modular distortion phantom using easily obtainable materials, and 

showed and constructed a large modular distortion phantom using easily obtainable 

materials, and used it to characterize the distortion on several widely available MR 

systems.  To accompany this phantom, open source software was also developed for 

easy characterization of system-dependent distortions. Finally, while the dosimetric 

equivalence of synCT with CT has been well established, it was necessary to 

characterize any differences that may exist between synCT and CT in an IGRT setting.  
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This work has helped to establish the geometric equivalence of these two modalities, 

with some caveats that have been discussed at length. 
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